Skip to main content

Advertisement

Log in

Novel pH-Sensitive Hydrogel Beads Based on Carrageenan and Fish Scale Collagen for Allopurinol Drug Delivery

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this work, pH-sensitive hydrogel beads based on fish scale collagen and carrageenan were used as a novel allopurinol drug loading system to improve the bioavailability of allopurinol, which is used to treat gout and high levels of uric acid in the human body. The effectiveness of the carrageenan/collagen/allopurinol hydrogel beads in improving the physical properties of allopurinol and the ability for drug release control in different simulated body fluids were evaluated by infrared (IR) spectroscopy, field emission scanning electron microscopy (FESEM), differential scanning calorimetry (DSC), dynamic light scattering (DLS) and Ultraviolet–Vis (UV–Vis) spectroscopy. In addition, the ability of hydrogen bond formation between allopurinol, carrageenan and collagen was calculated theoretically based on the B3LYP/6-31+g(d)//B3LYP/6-311++g(d,p) level of theory. Both the theoretical and experimental results proved that the hydrogen bonds of the functional groups in allopurinol with the functional groups in carrageenan and fish scale collagen contributed to the enhancement of drug release control as well as to the bioavailability of allopurinol loaded into the carrageenan/collagen hydrogel beads. The dissolution of carrageenan/collagen/allopurinol hydrogel beads in different simulated body fluids increased by 1.6 to 6.7 times compared to that of crystalline allopurinol.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pathan IB, Munde SJ, Shelke S, Ambekar W, Mallikarjuna SC (2019) Int J Polym Mater Polym Biomater 68:165

    CAS  Google Scholar 

  2. Iswariya S, Velswamy P, Uma TS (2018) J Polym Environ 26:2086

    CAS  Google Scholar 

  3. Yang C, Wu H, Wang J (2019) Mater Technol 34:534

    CAS  Google Scholar 

  4. Shalaby M, Agwa M, Saeed H, Khedr SM, Morsy O, El-Demellawy MA (2020) J Polym Environ 28:166

    CAS  Google Scholar 

  5. Bo A, Yu-Shan L, Barbara B (2016) Adv Drug Deliv Rev 97:69

    Google Scholar 

  6. Perez PV, Jiménez RM, Romero A, Guerrero A (2019) Int J Bio Macromol 139:262

    Google Scholar 

  7. Lin Q, Huo Q, Qin Y, Zhao Z, Tao F (2016) Bioengineered 8:55

    PubMed  PubMed Central  Google Scholar 

  8. Naghshineh N, Tahvildari K, Nozari M (2019) J Polym Environ 27:2819

    CAS  Google Scholar 

  9. Aishwarya S, Mahalakshmi S, Sehgal PK (2008) J Microencapsul 25:298

    CAS  PubMed  Google Scholar 

  10. Prabu P, Dharmaraj N, Santosh A, Lee BM, Vijaya R, Kim HY (2006) J Biomed Mater Res 79A:153

    CAS  Google Scholar 

  11. Schlapp M, Friess W (2003) J Pharm Sci 92:2145

    CAS  PubMed  Google Scholar 

  12. Fitzgerald KA, Guo J, Tierney EG, Curtin CM, Malhotra M, Darcy R, O'Brien FJ, O'Driscoll CM (2015) Biomaterials 66:53

    CAS  PubMed  Google Scholar 

  13. Jun KW, Kim PY, Yong YC, Timothy TY, Nguan ST, Véronique A, Cleo C (2017) Acta Biomater 63:246

    Google Scholar 

  14. Tacharodi D, Panduranga RK (1996) Int J Pharm 134:239

    Google Scholar 

  15. Albu MG, Ghica MV, Leca M, Popa L, Borlescu C, Cremenescu E, Trandafir V (2010) Mol Cryst Liq Cryst 523:97

    CAS  Google Scholar 

  16. Naresh K, Shahin SA, Vikash KD, Utpal B (2010) J Protein Proteom 1:9

    Google Scholar 

  17. Ruszczak Z, Friess W (2003) Adv Drug Deliv Rev 55:1679

    CAS  PubMed  Google Scholar 

  18. Park SN, Kim JK, Suh H (2004) Biomaterials 25:3689

    CAS  PubMed  Google Scholar 

  19. Cascone MG, Di Silvio L, Sim B, Downes S (1994) J Mater Sci Mater Med 5:770

    CAS  Google Scholar 

  20. James M, Alyssa P (2017) Acta Biomater 49:78

    Google Scholar 

  21. Chie K, Tomoyuki S, Kenji W, Mikako O, Ayano F, Eiko N, Atsushi H, Kenji K, Takashi I, Yasuhiro M (2013) Acta Biomater 9:5673

    Google Scholar 

  22. Tihan GT, Ungureanu C, Barbaresso RC, Zgârian RG, Rău I, Meghea A, Albu MG, Ghica MV (2015) C R Chim 18:986

    Google Scholar 

  23. Yunpeng L, Yan Q, Ruyu B, Xin Z, Limin Y, Jun L (2019) Int J Bio Macromol 134:993

    Google Scholar 

  24. Chakraborty S (2017) J Carbohydr Chem 36:1

    CAS  Google Scholar 

  25. Gholam RM, Hossein E, Fatemeh S (2015) Carbohydr Polym 128:112

    Google Scholar 

  26. Jina SV, Nisha C, Nishter NF (2014) Colloid Surf B 113:346

    Google Scholar 

  27. Malairaj S, Ramar T, Mani G, Raju V, Sengottuvelan B, Subramani N, Palani G, Balarama M, Ramasamy R (2017) Carbohydr Polym 160:184

    Google Scholar 

  28. Jie L, Xiaoqin Y, Enbo X, Zhengzong W, Xueming X, Zhengyu J, Aiquan J (2015) J Carbohydr Polym 131:98

    Google Scholar 

  29. Gholam RM, Amirabbas M, Moslem S, Mohammad S (2017) Int J Bio Macromol 97:209–217

    Google Scholar 

  30. Santamaría VJ, Rozo TG, Barreto CB (2019) J Polym Environ 27:774–783

    Google Scholar 

  31. Jagdale SC, Musale V, Kucheka BS, Chabukswar AR (2011) Braz J Pharm Sci 47:3

    Google Scholar 

  32. Khouloud AA, Wasfi MO, Naji MN (2001) AAPS Pharm Sci Tech 2(1):27–33

    Google Scholar 

  33. Chinh NT, Manh VQ, Trung VQ, Lam TD, Huynh MD, Tung NQ, Trinh ND, Hoang T (2019) Nat Prod Commun 14:1–12

    Google Scholar 

  34. Ma S, Chen L, Liu X, Li D, Ye N, Wang L (2012) Int J Green Energy 9(1):13–21

    CAS  Google Scholar 

  35. Chun-Yung H, Jen-Min K, Shu-Jing W, Hsing-Tsung T (2016) Food Chem 190:997

    Google Scholar 

  36. Laurent B, Marianne O (2011) Biophys J 101:228

    Google Scholar 

  37. Rhein-Knudsen N, Ale M, Meyer A (2015) Marine Drugs 13:3340

    PubMed  PubMed Central  Google Scholar 

  38. Chinh NT, Trang NTT, Giang NV, Thanh DTM, Hang TTX, Tung NQ, Truyen CQ, Quan PM, Long PQ, Hoang T (2016) J Appl Polym Sci 133:43330

    Google Scholar 

  39. Hoang T, Lam TD, Loc TT, Giang LD, Trang TDM, Trung VQ, Anh NT, Trinh ND, Chinh NT (2019) J Polym Environ 27:2728

    Google Scholar 

  40. Florin AR, Markus B, Peter K, Geoffrey WL, Wolfgang CF (2002) J Pharm Sci 91:964

    Google Scholar 

  41. Gaussian09 Rev. C01, Gaussian, Inc, Wallingford

  42. Silva AM, Ghosh A, Chaudhuri P (2013) J Phys Chem A 117:10274

    PubMed  Google Scholar 

  43. Hiroko XK, Ayumi K, Colin KK, Jinta O, Shusuke Y, Haruki N, Yu T (2019) J Comput Chem 40:2043

    Google Scholar 

  44. Joshua AP, Dannenberg JJ (2011) J Phys Chem B 115:10560

    Google Scholar 

  45. Boys SF, Bernardi F (1970) Mol Phys 19:553

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 104.02-2017.326, period of 2018–2021.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chinh Thuy Nguyen or Hoang Thai.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2285 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, C.T., Vu, M.Q., Phan, T.T. et al. Novel pH-Sensitive Hydrogel Beads Based on Carrageenan and Fish Scale Collagen for Allopurinol Drug Delivery. J Polym Environ 28, 1795–1810 (2020). https://doi.org/10.1007/s10924-020-01727-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01727-6

Keywords

Navigation