Skip to main content
Log in

Chain-End Functional di-Sorbitan Oleate Monomer Obtained from Renewable Resources as Precursors for Bio-Based Polyurethanes

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A three-step synthetic route was proposed and tested to obtain a chain-end functional di-sorbitan oleate monomer: First, 1,18-octadec-9-enedioic acid compound was produced by self-metathesis reaction of an oleic acid; then, the 1,18-octadec-9-enoyl dichloride compound was yielded by chlorination of the di-acid with thionyl chloride, and finally, the 1,18-di-sorbitan oleate monomer was yielded by esterification of the dichloride with 1,4-sorbitan. The di-sorbitan oleate monomer was purified and then characterized by FTIR, 1H-NMR, DSC and TGA to establish its structure and properties. A bio-based polyurethane (PU) was synthesized by reacting the obtained 1,18-di-sorbitan oleate monomer and MDI. Rheological analysis showed that a curing reaction occurs as a significant increase of the storage modulus (G’) and the complex viscosity (η*) at 100 °C. The obtained bio-based PU was characterized by FTIR, TGA and DMA, confirming that 1,18-di-sorbitan oleate is a feasible monomer for synthesizing polyurethanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mülhaupt R (2013) Macromol Chem Phys 214:159

    Google Scholar 

  2. Budzianowski WM (2017) Renew Sustain Energy Rev 70:793

    CAS  Google Scholar 

  3. Sheldon RA (2016) J Mol Catal A: Chem 422:3

    CAS  Google Scholar 

  4. Wang J et al (2017) Waste Manage 65:11

    CAS  Google Scholar 

  5. John G et al (2019) Prog Polym Sci 92:158

    CAS  Google Scholar 

  6. Zhang C et al (2017) Prog Polym Sci 71:91

    CAS  Google Scholar 

  7. Gandini A, Lacerda TM (2015) Prog Polym Sci 48:1

    CAS  Google Scholar 

  8. Salimon J, Salih N, Yousif E (2012) Arab J Chem 5(2):135

    CAS  Google Scholar 

  9. Yabushita M, Kobayashi H, Fukuoka A (2014) Appl Catal B 145:1

    CAS  Google Scholar 

  10. Rose M, Palkovits R (2012) Chemsuschem 5(1):167

    CAS  PubMed  Google Scholar 

  11. Rusu OA et al (2015) Appl Catal B 176–177:139

    Google Scholar 

  12. Cao D et al (2016) Appl Catal A 528:59

    CAS  Google Scholar 

  13. Ginés-Molina MJ et al (2017) Appl Catal A 537:66

    Google Scholar 

  14. Cubo A et al (2017) Appl Catal A 531:151

    CAS  Google Scholar 

  15. Zhang Y et al (2018) Mol Catal 458:19

    CAS  Google Scholar 

  16. Dussenne C et al (2019) Mol Catal 463:61

    CAS  Google Scholar 

  17. Yuan D et al (2019) Appl Catal B 240:182

    CAS  Google Scholar 

  18. Gustini L et al (2015) Eur Polymer J 67:459

    CAS  Google Scholar 

  19. Bersot JC et al (2011) Macromol Chem Phys 212(19):2114

    CAS  Google Scholar 

  20. Brack, H., et al. (2011) US 2011/0077377A1 SABIC Innov Plast IP BV.

  21. Jeong G-T et al (2007) Appl Biochem Biotechnol 137(1):935

    PubMed  Google Scholar 

  22. Ng SH et al (2013) J Nanobiotechnol 11(1):27

    CAS  Google Scholar 

  23. Ciriminna R et al (2014) Sustain Chem Process 2(1):26

    Google Scholar 

  24. Hojabri L, Kong X, Narine S (2010) J Polym Sci A: Polym Chem 48(15):3302

    CAS  Google Scholar 

  25. More AS et al (2013) Eur Polymer J 49(4):823

    CAS  Google Scholar 

  26. Charlon M et al (2014) Eur Polymer J 61:197

    CAS  Google Scholar 

  27. del Río E et al (2011) Macromol Chem Phys 212(13):1392

    Google Scholar 

  28. Miao S et al (2012) Eur J Lipid Sci Technol 114(12):1345

    CAS  Google Scholar 

  29. Kalita H, Karak N (2014) J Appl Polym Sci 131(1):39579

    Google Scholar 

  30. Fourati Y et al (2017) Prog Org Coat 105:48

    CAS  Google Scholar 

  31. Mol J (1994) J Mol Catal 90(1–2):185

    CAS  Google Scholar 

  32. Mol J, Khosravi E, SzymanskaBuzar T (2002) Ring Open Metathesis Polym Relat Chem 56:377

    CAS  Google Scholar 

  33. Mol J (2004) Top Catal 27(1–4):97

    CAS  Google Scholar 

  34. Mol JC (2004) J Mol Catal A: Chem 213(1):39

    CAS  Google Scholar 

  35. Ngo H, Jones K, Foglia T (2006) J Am Oil Chem Soc 83(7):629

    CAS  Google Scholar 

  36. Ngo H, Foglia T (2007) J Am Oil Chem Soc 84(8):777

    CAS  Google Scholar 

  37. Zerkowski J, Solaiman D (2012) J Am Oil Chem Soc 89(7):1325

    CAS  Google Scholar 

  38. Kadyrov R et al (2012) Top Catal 55(7–10):538

    CAS  Google Scholar 

  39. Vyshnavi Y, Prasad RBN, Karuna MSL (2013) Ind Crops Prod 50:701

    CAS  Google Scholar 

  40. Aguilar-Castro C et al (2019) J Appl Polym Sci 136(8):47095

    Google Scholar 

  41. Yabushita , M. (2016) in a study on catalytic conversion of non-food biomass into chemicals: fusion of chemical sciences and engineering, Springer, Editor p.127

  42. Yabushita M et al (2015) Bull Chem Soc Jpn 88(7):996

    CAS  Google Scholar 

  43. Petrović ZS et al (2010) Eur J Lipid Sci Technol 112(1):97

    Google Scholar 

  44. Miao S et al (2014) Acta Biomater 10:1692

    CAS  PubMed  Google Scholar 

  45. Riyapan D, Saetung A, Saetung N (2019) J Polym Environ 27:1693

    CAS  Google Scholar 

  46. Dhaliwal GS, Anandan S, Chandrashekhara K et al (2019) J Polym Environ 27:1897

    CAS  Google Scholar 

  47. Bresolin D, Valério A, de Oliveira D et al (2018) J Polym Environ 26:2467

    CAS  Google Scholar 

  48. Zhuang JM, Steiner Paul R (1993) in Holzforschung – Int J Biol. Chem, Phys Technol Wood p, p 425

    Google Scholar 

  49. Yang PF, Han YD, Li TD (2011) Adv Mater Res 150–151:23

    Google Scholar 

  50. Lu M-Y et al (2018) Croat Chem Acta 91(3):299

    Google Scholar 

  51. Krämer RH et al (2010) Polym Degrad Stab 95(6):1115

    Google Scholar 

  52. Ketata N et al (2005) Polym Polym Compos 13(1):1

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the National Council of Science and Technology of Mexico (CONACYT) for supporting this research work through the project CB-2015–01-257591.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis-Edmundo Lugo-Uribe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2335 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valencia-Bermudez, S., Hernández-López, S., Gutiérrez-Nava, M. et al. Chain-End Functional di-Sorbitan Oleate Monomer Obtained from Renewable Resources as Precursors for Bio-Based Polyurethanes. J Polym Environ 28, 1406–1419 (2020). https://doi.org/10.1007/s10924-020-01692-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01692-0

Keywords

Navigation