Skip to main content
Log in

Tuning Degradation and Mechanical Properties of Poly(l-lactic acid) with Biomass-Derived Poly(l-malic acid)

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Poly(l-malic acid) (PLMA) oligomer was used as the minor phase to prepare the blends with poly(l-lactic acid) (PLLA), with the objective to develop fully biomass-derived and biodegradable aliphatic polyester blends with balanced overall performance. The phase behavior and viscoelastic responses reveals that the two phases are thermodynamically immiscible, showing high level of interfacial tension in their blends. Poor phase adhesion and lower mass weight of PLMA results in an evident decrease of mechanical properties of the blends as compared to PLLA. The dilute effect caused by the addition of PLMA, however, promotes the cold crystallization of PLLA. Therefore, the strength and modulus losses of the blends can be remedied well by the annealing in solid state. Besides, the degradation rates can also be regulated by the presence of hydrophilic PLMA phase. In this case, a fully green PLLA/PLMA blend with balanced properties is fabricated. This work also provides useful information developing new applications of PLMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356

    CAS  Google Scholar 

  2. Khanloua HM, Woodfield P, Summerscales J, Francucci G, King B, Talebian S, Foroughi J, Hall W (2018) Estimation of mechanical property degradation of poly(lactic acid) and flax fibre reinforced poly(lactic acid) bio-composites during thermal processing. Measurement 116:367–372

    Google Scholar 

  3. Khanlou HM, Woodfield P, Summerscales J, Hall W (2017) Consolidation process boundaries of the degradation of mechanical properties in compression moulding of natural-fibre bio-polymer composites. Polym Degrad Stab 138:115–125

    CAS  Google Scholar 

  4. Khanlou HM, Hall W, Woodfield P, Summerscales J, Francucci G (2018) The mechanical properties of flax fibre reinforced poly(lactic acid) bio-composites exposed to wet, freezing and humid environments. J Compos Mater 52:835–850

    Google Scholar 

  5. Khanlou HM, Hall W, Heitzman MT, Summerscales J, Woodfield P (2016) Technical note: on modelling thermo-chemical degradation of poly(lactic acid). Polym Degrad Stab 134:19–21

    CAS  Google Scholar 

  6. Chen JX, Lu LL, Wu DF, Yuan LJ, Zhang M, Hua JJ, Xu J (2014) Green poly(ε-caprolactone) composites reinforced with the electrospun polylactide/poly(ε-caprolactone) blend fiber mats. ACS Sustain Chem Eng 2:2102–2110

    CAS  Google Scholar 

  7. Wu DF, Zhang YS, Zhang M, Zhou WD (2008) Phase behavior and its viscoelastic responses of polylactide/poly(ε-caprolactone) blend. Eur Polym J 44:2171–2183

    CAS  Google Scholar 

  8. Wu DF, Zhang YS, Yuan LJ, Zhang M, Zhou WD (2010) Viscoelastic interfacial properties of compatibilized polylactide/poly(ε-caprolactone) blend. J Polym Sci B 48:756–765

    CAS  Google Scholar 

  9. Yokohara T, Yamaguchi M (2008) Structure and properties for biomass-based polyester blends of PLA and PBS. Eur Polym J 44:677–685

    CAS  Google Scholar 

  10. Shibata M, Inoue Y, Miyoshi M (2006) Mechanical properties, morphology, and crystallization behavior of blends of poly(l-lactide) with poly(butylene succinate-co-l-lactate) and poly(butylene succinate). Polymer 47:3557–3564

    CAS  Google Scholar 

  11. Wu DF, Yuan LJ, Laredo E, Zhang M, Zhou WD (2012) Interfacial properties, viscoelasticity, and thermal behaviors of poly(butylene succinate)/polylactide blend. Ind Eng Chem Res 51:2290–2298

    CAS  Google Scholar 

  12. Ouchi T, Fujino A (1989) Synthesis of poly(α-malic acid) and its hydrolysis behavior in vitro. Makromol Chem Phys 190:1523–1530

    CAS  Google Scholar 

  13. Arnold SC, Lenz RW (1986) Synthesis of stereoregular poly(alkyl malolactonates). Makromol Chem Macromol Symp 6:285–303

    CAS  Google Scholar 

  14. Guerin P, Vert M, Braud C, Lenz RW (1985) Optically active poly(β-malic-acid). Polym Bull 14:187–192

    CAS  Google Scholar 

  15. Lee BS, Holler E (2000) β-Poly(l-malate) production by non-growing microplasmodia of physarum polycephalum: effects of metabolic intermediates and inhibitors. FEMS Microbiol Lett 193:69–74

    CAS  PubMed  Google Scholar 

  16. Kajiyama T, Taguchi T, Kobayashi H, Kataoka K, Tanaka J (2003) Physicochemical properties of high-molecular-weight poly(α, β-malic acid) synthesized by direct polycondensation. Polym Bull 50:69–75

    CAS  Google Scholar 

  17. Kajiyama T, Kobayashi H, Taguchi T, Kataoka K, Tanaka J (2004) Improved synthesis with high yield and increased molecular weight of poly(α, β-malic acid) by direct polycondensation. Biomacromol 5:169–174

    CAS  Google Scholar 

  18. Oyama HT, Tanishima D, Maekawa S (2016) Poly(malic acid-co- l-lactide) as a superb degradation accelerator for poly(l-lactic acid) at physiological conditions. Polym Degrad Stab 134:265–271

    CAS  Google Scholar 

  19. He B, Wan YQ, Bei JZ, Wang SG (2004) Synthesis and cell affinity of functionalized poly(l-lactide-co-b-malic acid) with high molecular weight. Biomaterials 25:5239–5247

    CAS  PubMed  Google Scholar 

  20. He B, Bei JZ, Wang SG (2003) Synthesis and characterization of a functionalized biodegradable copolymer: poly(l-lactide-co-RS-β-malic acid). Polymer 44:989–994

    CAS  Google Scholar 

  21. Coulembier O, Dege P, Cammas-Marion S, Guérin P, Dubois P (2002) New amphiphilic poly[(r, s)-β-malic acid-b-ε-caprolactone] diblock copolymers by combining anionic and coordination-insertion ring-opening polymerization. Macromolecules 35:9896–9903

    CAS  Google Scholar 

  22. Coulembier O, Degée P, Gerbaux P, Wantier P, Barbaud C, Flammang R, Guérin P, Dubois P (2005) Synthesis of amphiphilic poly((R, S)-β-malic acid)-graft-poly(ε-caprolactone): “grafting from” and “grafting through” approaches. Macromolecules 38:3141–3150

    CAS  Google Scholar 

  23. Rieger J, Coulembier O, Dubois P, Bernaerts KV, Du Prez FE, Jérôme R, Jérôme C (2005) Controlled synthesis of an abc miktoarm star-shaped copolymer by sequential ring-opening polymerization of ethylene oxide, benzyl β-malolactonate, and ε-caprolactone. Macromolecules 38:10650–10657

    CAS  Google Scholar 

  24. Barouti G, Jarnouen K, Cammas-Marion S, Loyer P, Guillaume SM (2015) Polyhydroxyalkanoate-based amphiphilic diblock copolymers as original biocompatible nanovectors. Polym Chem 6:5414–5429

    CAS  Google Scholar 

  25. Coulembier O, Mespouille L, Hedrick JL, Waymouth RM, Dubois P (2006) Metal-free catalyzed ring-opening polymerization of β-lactones: synthesis of amphiphilic triblock copolymers based on poly(dimethylmalic acid). Macromolecules 39:4001–4008

    CAS  Google Scholar 

  26. Qiu YX, Wanyan QR, Xie WY, Wang ZF, Chen M, Wu DF (2019) Green and biomass-derived materials with controllable shape memory transition temperatures based on cross-linked poly(l-malic acid). Polymer 180:121733

    CAS  Google Scholar 

  27. Oyama HT, Tanishima D, Ogawa R (2017) Biologically safe Poly(l-lactic acid) blends with tunable degradation rate: microstructure, degradation mechanism, and mechanical properties. Biomacromol 18:1281–1292

    CAS  Google Scholar 

  28. Carriere CJ, Cohen A, Arends CB (1989) Estimation of interfacial tension using shape evolution of short fibers. J Rheol 33:681–689

    CAS  Google Scholar 

  29. Xing PX, Bousmina M, Rodrigue D (2000) Critical experimental comparison between five techniques for the determination of interfacial tension in polymer blends: model system of polystyrene/polyamide-6. Macromolecules 33:8020–8034

    CAS  Google Scholar 

  30. Wu DF, Lin DP, Zhang J, Zhou WD, Zhang M, Zhang YS, Wang DM, Lin BL (2011) Selective localization of nanofillers: effect on morphology and crystallization of PLA/PCL blends. Macromol Chem Phys 212:613–626

    CAS  Google Scholar 

  31. Lee HM, Park OO (1994) Rheology and dynamics of immiscible polymer blends. J Rheol 38:1405–1425

    CAS  Google Scholar 

  32. Yu W, Bousmina M, Grmela M, Zhou CX (2002) Modeling of oscillatory shear flow of emulsions under small and large deformation fields. J Rheol 46:1401–1418

    CAS  Google Scholar 

  33. Wu DF, Zhang YS, Zhang M, Yu W (2009) Selective localization of multi-walled carbon nanotube in polylactide/poly(ε-caprolactone) blend. Biomacromol 10:417–424

    CAS  Google Scholar 

  34. Wu DF, Wu L, Zhou WD, Zhang M, Yang T (2010) Crystallization and biodegradation behaviors of polylactide/carbon nanotube composites. Polym Eng Sci 50:1721–1733

    CAS  Google Scholar 

  35. Fan YJ, Nishida H, Hoshihara S, Shirai Y, Tokiwa Y, Endo T (2003) Pyrolysis kinetics of poly(l-lactide) with carboxyl and calcium salt end structures. Polym Degrad Stab 79:547–562

    CAS  Google Scholar 

  36. Hakkarainen M, Karlsson S, Albertsson AC (2000) Rapid (bio)degradation of polylactide by mixed culture of compost microorganisms-low molecular weight products and matrix changes. Polymer 41:2331–2338

    CAS  Google Scholar 

  37. Wu DF, Wu L, Wu LF, Zhang M (2006) Rheology and thermal stability of polylactide/clay nanocomposites. Polym Degrad Stab 91:3149–3155

    CAS  Google Scholar 

  38. Li SM, McCarthy S (1999) Further investigations on the hydrolytic degradation of poly(DL-lactide). Biomaterial 20:35–44

    CAS  Google Scholar 

  39. Wu DF, Wu L, Wu LF, Xu B, Zhang M (2008) Comparison between isothermal melt and cold crystallization of polylactide/clay nanocomposites. J Nanosci Nanotechnol 8:1658–1668

    CAS  PubMed  Google Scholar 

  40. Wu DF, Wu L, Wu LF, Xu B, Zhang M (2007) Non-isothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J Polym Sci B 45:1100–1113

    CAS  Google Scholar 

  41. Xu CJ, Chen JX, Wu DF, Chen Y, Lv QL, Wang MQ (2016) Polylactide/acetylated nanocrystalline cellulose composites prepared by a continuous route: a phase interface-property study. Carbohydr Polym 146:58–66

    CAS  PubMed  Google Scholar 

  42. Xu CJ, Lv QL, Wu DF, Wang ZF (2017) Polylactide/cellulose nanocrystal composites: a comparative study on cold and melt crystallization. Cellulose 24:2163–2175

    CAS  Google Scholar 

  43. Kusumi R, Teramoto Y, Nishio Y (2008) Crystallization behavior of poly(ε-caprolactone) grafted onto cellulose alkyl esters: effects of copolymer composition and intercomponent miscibility. Macromol Chem Phys 209:2135–2146

    CAS  Google Scholar 

  44. Xu CJ, Wu DF, Lv QL, Yan LL (2017) Crystallization temperature as the probe to detect polymer-filler compatibility in the poly(ε-caprolactone) composites with acetylated cellulose nanocrystals. J Phys Chem C 121:18615–18624

    CAS  Google Scholar 

  45. Kusumi R, Inoue Y, Shirakawa M, Miyashita Y, Nishio Y (2008) Cellulose alkyl ester/poly(ε-caprolactone) blends: characterization of miscibility and crystallization behavior. Cellulose 15:1–16

    CAS  Google Scholar 

  46. Chen JX, Wu DF, Tam KC, Pan KR, Zheng ZG (2017) Effect of surface modification of cellulose nanocrystal on nonisothermal crystallization of poly(β-hydroxybutyrate) composites. Carbohydr Polym 157:1821–1829

    CAS  PubMed  Google Scholar 

  47. Chen JX, Xu CJ, Wu DF, Sha YL, Pan KR, Wang L, Qian AW, Tong W (2015) Insights into the nucleation role of cellulose crystals during crystallization of poly(β-hydroxybutyrate). Carbohydr Polym 134:508–515

    CAS  PubMed  Google Scholar 

  48. Ying ZR, Wu DF, Zhang M, Qiu YX (2017) Polylactide/basalt fiber composites with tailorable mechanical properties: effect of surface treatment of fibers and annealing. Compos Struct 176:1020–1027

    Google Scholar 

  49. Yang T, Wu DF, Lu LL, Zhang M, Zhou WD (2011) Electrospinning of polylactide and its composites with carbon nanotubes. Polym Compos 32:1280–1288

    CAS  Google Scholar 

  50. Ying ZR, Wu DF, Xie WY, Wang ZF, Qiu YX, Wei XJ (2018) Rheological and mechanical properties of polylactide nanocomposites reinforced with the cellulose nanofibers with various surface treatments. Cellulose 25:3955–3971

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thanks the National Natural Science Foundation of China (51573156) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Defeng Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wanyan, Q., Qiu, Y., Xie, W. et al. Tuning Degradation and Mechanical Properties of Poly(l-lactic acid) with Biomass-Derived Poly(l-malic acid). J Polym Environ 28, 884–891 (2020). https://doi.org/10.1007/s10924-020-01652-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01652-8

Keywords

Navigation