Skip to main content
Log in

Self-Catalytic Two-Component Waterborne Polyurethanes with Amino Polyols from Biomass Based Epoxy Resin

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In order to improve the crosslinking reaction rate of two-component waterborne polyurethanes (2K-WPUs) in the absence of ungreen external catalysts, waterborne polyols containing different tertiary amines in molecular structure were synthesized from a turpentine-based epoxy resin (TME) and secondary amines (N-benzylethanolamine and diethanolamine). Then self-catalytic 2K-WPUs were prepared with the waterborne amino polyols and a hydrophilically modified hexamethylene diisocyanate tripolymer. The structure and micromorphology of TME based polyols were identified using nuclear magnetic resonance (1H NMR, 13C NMR), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy techniques. The crosslinking reaction of 2K-WPUs was monitored using differential scanning calorimetry (DSC) and FT-IR methods. Kinetics analysis from DSC showed the activation energy of the crosslinking reaction of 2K-WPUs reduced obviously by using amino polyols, which indicated the tertiary amines chemically bonded in the polyols could self-catalyze the crosslinking reaction of 2K-WPUs without adding small molecular toxic catalysts. Small steric hindrance of the tertiary amines led to high catalytic activity. The properties of the crosslinked products of the waterborne TME based polyols were investigated by DSC, thermogravmetric analysis and dynamic mechanical analysis (DMA). The results showed high hydroxyl value of the polyol and aromatic ring in the polyol structure resulted in high storage modulus (G′) and glass transition temperature (Tg) of the crosslinked products. More C–N bond content of the crosslinked products of the waterborne amino polyols decreased the thermal stability in the first degradation stage of the products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kang SY, Ji ZX, Tseng LF, Turner SA, Villanueva DA, Johnson R, Albano A, Langer R (2018) Design and synthesis of waterborne polyurethanes. Adv Mater 30:1706237

    Article  Google Scholar 

  2. Wang J, Zhang HM, Miao YY, Qiao LJ, Wang XH (2017) A whole-procedure solvent-free route to CO2-based waterborne polyurethane by an elevated-temperature dispersing strategy. Green Chem 19:2194–2200

    Article  CAS  Google Scholar 

  3. Zafar F, Ghosal A, Sharmin E, Chaturvedi R, Nishat N (2019) A review on cleaner production of polymeric and nanocomposite coatings based on waterborne polyurethane dispersions from seed oils. Prog Org Coat 131:259–275

    Article  CAS  Google Scholar 

  4. Etxaniz I, Llorente O, Aizpurua J, Martin L, Gonzalez A, Irusta L (2019) Dispersion characteristics and curing behaviour of waterborne UV crosslinkable polyurethanes based on renewable dimer fatty acid polyesters. J Polym Environ 27:189–197

    Article  CAS  Google Scholar 

  5. Zhou WS, Liu DY, Liu T, Ni LJ, Quan H, Sun QC (2019) Emulsion stability and water tolerance of cationic waterborne polyurethane with different soft segment ratios between trifunctional polyether and bifunctional polyester. Mater Res Express 6:065303

    Article  CAS  Google Scholar 

  6. Kim HA, Kim BK (2019) Synthesis and properties of waterborne polyurethane/hydroxyapatite chemical hybrids. Prog Org Coat 128:69–74

    Article  CAS  Google Scholar 

  7. Ding JH, Rahman OU, Peng WJ, Dou HM, Yu HB (2018) A novel hydroxyl epoxy phosphate monomer enhancing the anticorrosive performance of waterborne graphene/epoxy coatings. Appl Surf Sci 427:981–991

    Article  CAS  Google Scholar 

  8. Mondragon G, Santamaria-Echart A, Hormaiztegui MEV, Arbelaiz A, Pena-Rodriguez C, Mucci V, Corcuera M, Aranguren MI, Eceiza A (2018) Nanocomposites of waterborne polyurethane reinforced with cellulose nanocrystals from sisal fibres. J Polym Environ 26:1869–1880

    Article  CAS  Google Scholar 

  9. Wang L, Xu F, Li HX, Liu YY, Liu YL (2017) Preparation and stability of aqueous acrylic polyol dispersions for two-component waterborne polyurethane. J Coat Technol Res 14:215–223

    Article  CAS  Google Scholar 

  10. Wu GM, Liu D, Chen J, Liu GF, Kong ZW (2019) Preparation and properties of super hydrophobic films from siloxane-modified two-component waterborne polyurethane and hydrophobic nano SiO2. Prog Org Coat 127:80–87

    Article  CAS  Google Scholar 

  11. Wicks Z, Wicks D, Rosthauser J (2002) Two package waterborne urethane systems. Prog Org Coat 44:161–183

    Article  CAS  Google Scholar 

  12. Wu GM, Chen J, Huo SP, Liu GF, Kong ZW (2014) Thermoset nanocomposites from two-component waterborne polyurethanes and cellulose whiskers. Carbohydr Polym 105:207–213

    Article  CAS  Google Scholar 

  13. Winnik MA (2002) Interdiffusion and crosslinking in thermoset latex films. J Coat Technol 74:49–63

    Article  Google Scholar 

  14. Villegas-Villalobos S, Diaz LE, Vilarino-Feltrer G, Valles-Lluch A, Gomez-Tejedor J, Valero A MF (2018) Effect of an organotin catalyst on the physicochemical properties and biocompatibility of castor oil-based polyurethane/cellulose composites. J Mater Res 33:2598–2611

    Article  CAS  Google Scholar 

  15. Gogol R, Niyogi UK, Alam MS, Mehra DS (2012) Effect of organometallic and tertiary amine catalyst on the properties of polyurethane prepolymer. J Polym Mater 29:451–462

    Google Scholar 

  16. Sardon H, Irusta L, Fernandez-Berridi MJ (2009) Synthesis of isophorone diisocyanate (IPDI) based waterborne polyurethanes: Comparison between zirconium and tin catalysts in the polymerization process. Prog Org Coat 66:291–295

    Article  CAS  Google Scholar 

  17. Cakic S, Lacnjevac C, Stamenkovic J, Ristic N, Takic L, Barac M, Gligoric M (2007) Effects of the acrylic polyol structure and the selectivity of the employed catalyst on the performance of two-component aqueous polyurethane coatings. Sensors 7:308–318

    Article  CAS  Google Scholar 

  18. He ZA, Werner JB, Picci ME (2002) A selective catalyst for two-component waterborne polyurethane coatings. J Coat Technol 74:31–36

    Article  CAS  Google Scholar 

  19. Werner JB, He ZA, Hessell ET (1999) Catalysis of the isocyanate-hydroxyl reaction by non-tin catalysts. Prog Org Coat 35:19–29

    Article  Google Scholar 

  20. Werner JB (2002) Advances in catalysis for organic coatings. Chim Int J Chem 56:191–196

    Article  Google Scholar 

  21. Van Maris R (2005) Polyurethane catalysis by tertiary amines. J Cell Plast 41:305–322

    Article  Google Scholar 

  22. Silva AL, Bordado JC (2004) Recent developments in polyurethane catalysis: catalytic mechanisms review. Catal Rev 46:31–51

    Article  Google Scholar 

  23. Jang JK (2016) Amines as occupational hazards for visual disturbance. Ind Health 54:101–115

    Article  CAS  Google Scholar 

  24. Foley GD, Tucker SP, Cooper CV (1991) Analysis of air for tertiary amine catalysts used in the polyurethane foam industry. Am Ind Hyg Assoc J 52:664–665

    Google Scholar 

  25. Huang K, Zhang P, Zhang JW, Li SH, Li M, Xia JL, Zhou YH (2013) Preparation of biobased epoxies using tung oil fatty acid-derived C21 diacid and C22 triacid and study of epoxy properties. Green Chem 15:2466–2475

    Article  CAS  Google Scholar 

  26. Mantzaridis C, Brocas A, Llevot L, Cendejas A, Auvergne G, Caillol R, Carlotti S, Cramail S H (2013) Rosin acid oligomers as precursors of DGEBA-free epoxy resins. Green Chem 15:3091–3098

    Article  CAS  Google Scholar 

  27. Wu GM, Kong ZW, Huang H, Chen J, Chu FX (2007) Synthesis of epoxy resin from hydrogenated terpinene- maleic anhydride. Chem Ind Forest Prod 27:57–62

    Google Scholar 

  28. Wu GM, Liu D, Liu GF, Chen J, Huo SP, Kong ZW (2015) Thermoset nanocomposites from waterborne bio-based epoxy resinand cellulose nanowhiskers. Carbohydr Polym 127:229–235

    Article  CAS  Google Scholar 

  29. He Y (2001) DSC and DEA studies of underfill curing kinetics. Thermochim Acta 367:101–106

    Article  Google Scholar 

  30. Yousefi A, Lafleur PG, Gauvin R (1997) Kinetic studies of thermoset cure reactions: a review. Polym Compos 18:157–168

    Article  CAS  Google Scholar 

  31. Sbirrazzuoli N, Vyazovkin S (2002) Learning about epoxy cure mechanisms from isoconversional analysis of DSC data. Thermochim Acta 388:289–298

    Article  CAS  Google Scholar 

  32. Friedman HL (1965) Kinetics of thermal degradation of charforming plastics from thermo-gravimetry. Application to a phenolic plastic. J Polym Sci C 50:183–195

    Google Scholar 

  33. Ozawa T (1965) A new method analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886

    Article  CAS  Google Scholar 

  34. Flynn JH, Wall LA (1966) General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand Sect A 70:487–523

    Article  CAS  Google Scholar 

  35. Ozawa T (2000) Thermal analysis – review and prospect. Thermochim Acta 355:35–42

    Article  CAS  Google Scholar 

  36. Doyle C (1962) Estimating isothermal life from thermogravimetric data. J Appl Polym Sci 6:639–642

    Article  CAS  Google Scholar 

  37. Nagle DJ, Celina M, Rintoul L, Fredericks PM (2007) Infrared microspectroscopic study of the thermo-oxidative degradation of hydroxy-terminated polybutadiene/isophorone diisocyanate polyurethane rubber. Polym Degrad Stab 92:1446–1454

    Article  CAS  Google Scholar 

  38. Levchik SV, Weil ED (2004) Thermal decomposition, combustion and fire-retardancy of polyurethanes—a review of the recent literature. Polym Int 53:1585–1610

    Article  CAS  Google Scholar 

  39. Allan D, Daly J, Liggat JJ (2017) Structural and thermal degradation properties of novel metallocenepolyurethanes. Polym Degrad Stab 136:39–47

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Fundamental Research Funds for the Central Non-profit Research Institution of Chinese Academy of Forestry (CAFYBB2017ZC005) and the Natural Science Foundation of Jiangsu Province (BK20191134).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guomin Wu or Zhenwu Kong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, G., Bian, J., Liu, G. et al. Self-Catalytic Two-Component Waterborne Polyurethanes with Amino Polyols from Biomass Based Epoxy Resin. J Polym Environ 28, 713–724 (2020). https://doi.org/10.1007/s10924-019-01638-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01638-1

Keywords

Navigation