Skip to main content
Log in

Removal of Methylene Blue from Water by Copper Alginate/Activated Carbon Aerogel: Equilibrium, Kinetic, and Thermodynamic Studies

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Activated carbon adsorption method was the most commonly used in the flied of the sewerage treatment due to large adsorption capacity, high adsorption efficiency, convenient operation and high regeneration rate. Despite this, the poor aqueous dispersion has a potential to cause loss of the adsorbent and affect water quality. The dispersion state of the activated carbons can be controlled effectively by aerogel. In this paper, copper alginate/activated carbon (CA/AC) aerogel was prepared by using the ionic gelation method. The CA/AC aerogel was characterized by scanning electron microscope (SEM), Fourier Transform infrared spectroscopy (FTIR) and Brunauer–Emmett–Teller (BET) surface area. Methylene blue (MB) was served as the adsorbate. The effect of adsorbent dose, contact time, initial MB concentration and temperature was studied systematically on adsorption performance of CA/AC. Testing results showed that CA/AC aerogel has high BET surface area of 319.64 m2/g and high adsorption capacity of 446.43 mg/g at 303 K. The equilibrium of methylene blue removal process by CA/AC aerogel were well described by the Langmuir isotherm model and Freundlich isotherm model. The results of the thermodynamic investigations indicated that the adsorption reactions were spontaneous, exothermic and the adsorption kinetics of methylene blue on CA/AC aerogel was best fitted to the pseudo-second-order kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sun J, Sun S, Wang G, Qiao L (2007) Dyes Pigm 74:647

    Article  CAS  Google Scholar 

  2. El-Sheekh MM, Gharieb MM, Abou-El-Souod GW (2009) Int Biodeterior Biodegrad 63:69

    Google Scholar 

  3. Pablo CI, Fabiola M, Carlos J, Justo L, Rodrigo MA (2006) Environ Sci Technol 40:6418

    Article  Google Scholar 

  4. Salem IA, El-Maazawi MS (2000) Chemosphere 41:1173

    Article  CAS  Google Scholar 

  5. Slokar YM, Marechal ML (1998) Dyes Pigm 37:335

    Article  CAS  Google Scholar 

  6. Hassan AF, Abdelmohsen AM, Fouda MM (2014) Carbohydr Polym 102:192

    Article  CAS  Google Scholar 

  7. Wang Y, Li Y, Li H, Zheng H, Du Q (1342l) J Polym Environ 27:1342l

    Article  Google Scholar 

  8. Li Y, Du Q, Liu T, Sun J, Wang Y, Wu S, Wang Z, Xia Y, Xia L (2013) Carbohydr Polym 95:501

    Article  CAS  Google Scholar 

  9. Sarmento B, Martins S, Ribeiro A, Veiga F, Neufeld R, Ferreira D (2006) Int J Pept Res Ther 12:131

    Article  CAS  Google Scholar 

  10. Nasrullah A, Bhat AH, Naeem A, Isa MH, Danish M (2018) Int J Biol Macromol 107:1792

    Article  CAS  Google Scholar 

  11. Li Y, Liu F, Bing X, Du Q, Pan Z, Wang D, Wang Z, Xia Y (2010) J Hazard Mater 177:876

    Article  CAS  Google Scholar 

  12. Mahmoodi NM, Hayati B, Arami M, Bahrami H (2011) Desalination 275:93

    Article  CAS  Google Scholar 

  13. Rocher V, Siaugue JM, Cabuil V, Bee A (2008) Water Res 42:1290

    Article  CAS  Google Scholar 

  14. Yan W, Han GT, Ying G, Yuan MZ, Yan ZX, Chang QY, Da WW (2011) Adv Mater Res 152–153:1351

    Article  Google Scholar 

  15. Zhou K, Li Y, Li Q, Du Q, Wang D, Sui K, Wang C, Li H, Xia Y (2018) J Polym Environ 26:3362

    Article  CAS  Google Scholar 

  16. Nasrullah A, Saad B, Bhat AH, Khan AS, Danish M, Isa MH, Naeem A (2019) J Clean Prod 211:1190

    Article  CAS  Google Scholar 

  17. Duranoğlu D (2012) Energy Sources 34:12

    Google Scholar 

  18. East M (2016) Pure Appl Chem 38:25

    Google Scholar 

  19. Oladipo AA, Gazi M (2014) J Water Process Eng 2:43

    Article  Google Scholar 

  20. Vadivelan V, Kumar KV (2005) J Colloid Interface Sci 286:90

    Article  CAS  Google Scholar 

  21. Debnath S, Ghosh UC (2009) Chem Eng J 152:480

    Article  CAS  Google Scholar 

  22. Hameed BH, Ahmad AA (2009) J Hazard Mater 164:870

    Article  CAS  Google Scholar 

  23. Li L, Fan L, Sun M, Qiu H, Li X, Duan H, Luo C (2013) Int J Biol Macromol 58:169

    Article  CAS  Google Scholar 

  24. Gupta VK, Pathania D, Sharma S, Agarwal S, Singh P (2013) J Mol Liq 177:343

    Article  CAS  Google Scholar 

  25. Zamani S, Tabrizi NS (2015) Res Chem Intermed 41:7945

    Article  CAS  Google Scholar 

  26. He B, Zheng T, Wang F, Lu L (2016) Chin J Environ Eng 10:3005

    CAS  Google Scholar 

  27. Li Y, Du Q, Liu T, Peng X, Wang J, Sun J, Wang Y, Wu S, Wang Z, Xia Y (2013) Chem Eng Res Des 91:361

    Article  CAS  Google Scholar 

  28. Dural MU, Cavas L, Papageorgiou SK, Katsaros FK (2011) Chem Eng J 168:77

    Article  CAS  Google Scholar 

  29. Doğan M, Alkan M, Demirbaş Ö, Özdemir Y, Özmetin C (2006) Chem Eng J 124:89

    Article  Google Scholar 

  30. Yuh-Shan H (2006) Water Res 40:119

    Article  Google Scholar 

  31. Duman O, Ayranci E (2010) J Hazard Mater 174:359

    Article  CAS  Google Scholar 

  32. Yasar N, Emine M (2009) Bioresour Technol 99:2375

    Google Scholar 

  33. Li Y, Zhang P, Du Q, Peng X, Liu T, Wang Z, Xia Y, Zhang W, Wang K, Zhu H (2011) J Colloid Interface Sci 363:348

    Article  CAS  Google Scholar 

  34. Purkait MK, Maiti A, Dasgupta S, De S (2007) J Hazard Mater 145:287

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the financial support from the Qingdao Postdoctoral Science Foundation, National Natural Science Foundation of China (Grant No. 51672140), Natural Science Foundation of Shandong Province (Grant No. ZR2015EM038) and Taishan Scholar Program of Shandong Province (Grant No. 201511029)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhui Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, Y., Zhang, X. et al. Removal of Methylene Blue from Water by Copper Alginate/Activated Carbon Aerogel: Equilibrium, Kinetic, and Thermodynamic Studies. J Polym Environ 28, 200–210 (2020). https://doi.org/10.1007/s10924-019-01577-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01577-x

Keywords

Navigation