Skip to main content
Log in

Effects of Surface Modifications of Kraft Wood Pulp Cellulose Fibres on Improving the Mechanical Properties of Cellulose Fibre/Latex Composites

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this work, three composites with different contents (5, 10, and 15% w/w) of kraft pulp fibre were produced as reinforcing elements for natural latex matrix and the mechanical properties were evaluated. In order to improve the interfacial adhesion between the matrix and the reinforcing element, chemical modifications were carried out on the surface of the fibres using octanoyl and benzoyl chlorides as modifying agents. The extension of chemical modification of the fibres was visualized by the presence of absorption bands in the spectroscopy analyzes of the modified fibre in relation to the crude fibre (ester carbonyl 1700–1740 cm−1); in addition, the hydroxyl band was preserved, which indicates a modification of surface character. The modified fibres became more hydrophobic due to the decrease in surface energy and the change in the dispersive and polar components. An increase in the storage modulus was observed for the composites with surface-modified fibres, which agrees with the improved dispersion between the surface-modified fibres and the matrix verified by means of scanning electron microscopy images. The incorporation of fibres did not cause changes in the thermal properties of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Miranda CS, Fiuza RP, Carvalho RF, José NM (2014) Quim Nova 38:161

    Google Scholar 

  2. Silva R, Haraguchi SK, Muniz EC, Rubira AF (2009) Quim Nova 32:661

    Article  CAS  Google Scholar 

  3. Wei J, Meyer C (2015) Cem Concr Res 73:1

    Article  CAS  Google Scholar 

  4. Heinze T, Liebert T (2001) Prog Polym Sci 26:1689

    Article  CAS  Google Scholar 

  5. Zhang C, Dan Y, Peng J, Turng L-S, Sabo R, Clemons C (2014) Adv Polym Technol 33:21448

    Google Scholar 

  6. Kato H, Nakatsubo F, Abe K, Yano H, Ikkala O, Clemons C, Anandjiwala R, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2015) RSC Adv 5:29814

    Article  CAS  Google Scholar 

  7. Flauzino Neto WP, Mariano M, da Silva ISV, Silvério HA, Putaux J-L, Otaguro H, Pasquini D, Dufresne A (2016) Carbohydr Polym 153:143

    Article  CAS  Google Scholar 

  8. Demir H, Atikler U, Balköse D, Tıhmınlıoğlu F (2006) Composites A 37:447

    Article  Google Scholar 

  9. Pasquini D, de Teixeira EM, da Curvelo AAS, Belgacem MN, Dufresne A (2008) Compos Sci Technol 68:193

    Article  CAS  Google Scholar 

  10. Bledzki A, Gassan J (1999) Prog Polym Sci 24:221

    Article  CAS  Google Scholar 

  11. Boldizar A, Klason C, Kubát J, Näslund P, Sáha P (1987) Int J Polym Mater 11:229

    Article  CAS  Google Scholar 

  12. Belgacem MN, Gandini A (2005) Compos Interfaces 12:41

    Article  CAS  Google Scholar 

  13. Jacob M, Thomas S, Varughese KT (2004) Compos Sci Technol 64:955

    Article  CAS  Google Scholar 

  14. Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A (2007) Compos Sci Technol 67:1627

    Article  CAS  Google Scholar 

  15. Pittayavinai P, Thanawan S, Amornsakchai T (2016) Polym Test 54:84

    Article  CAS  Google Scholar 

  16. Kamaruddin NKN, Abdullah I, Ahmad I (2014) Int J Mater Eng Innov 5:70

    Article  Google Scholar 

  17. Leão RM, Luz SM, Christoforo AL (2016) J Bioprocess Biotech 6:269

    Article  Google Scholar 

  18. Owens DK, Wendt RC (1969) J Appl Polym Sci 13:1741

    Article  CAS  Google Scholar 

  19. Jiang F, Hsieh Y-L (2013) Carbohydr Polym 95:32

    Article  CAS  Google Scholar 

  20. Pasquini D, Belgacem MN, Gandini A, da Curvelo AAS (2006) J Colloid Interface Sci 295:79

    Article  CAS  Google Scholar 

  21. Drelich J, Miller JD (1995) Miner Metall Proc 12:197

    CAS  Google Scholar 

  22. Mousa A, Heinrich G, Wagenknecht U (2012) J Wood Chem Technol 32:82

    Article  CAS  Google Scholar 

  23. Zhang X, Wang J, Jia H, You S, Xiong X, Ding L, Xu Z (2016) Composites B 4:121

    Article  CAS  Google Scholar 

  24. Yue X, Liu P, Ning Y, Xu Y (2016) Compos Interfaces 23:873

    Article  CAS  Google Scholar 

  25. Nagalakshmaiah M, El kissi N, Mortha G, Dufresne A (2016) Carbohydr Polym 136:945

    Article  CAS  Google Scholar 

  26. Roman M, Winter WT (2004) Biomacromolecules 5:1671

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harumi Otaguro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prado, N.S., da Silva, I.S.V., de Morais, L.C. et al. Effects of Surface Modifications of Kraft Wood Pulp Cellulose Fibres on Improving the Mechanical Properties of Cellulose Fibre/Latex Composites. J Polym Environ 27, 2445–2453 (2019). https://doi.org/10.1007/s10924-019-01516-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01516-w

Keywords

Navigation