Skip to main content
Log in

Thermal and Physiochemical Characterization of Lignin Extracted from Wheat Straw by Organosolv Process

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The purified lignin extracted from wheat straw by organosolv process was characterized for the existence of lignin subunits, functional groups and physical and thermal behaviours. Presence of carboxyl, hydroxyl, methoxyl groups and C–C, C–O, C=O linkages were conducted by Fourier Transform Infrared (FT-IR). By 1H-NMR (Nuclear Magnetic Resonance Spectroscopy) presence of aromatic protons, phenolic hydroxyls, carboxylic acids, and aldehydes were established. Moreover, 13C-NMR spectra have disclosed the presence of condensed and uncondensed aliphatic and aromatic aryls and ethers. The existence of syringyl and guaiacyl units also were confirmed with both FTIR and NMR spectroscopies. Furthermore, the results from Thermal Gravimetric Analysis (TGA) showed the weight of extracted lignin is changed in temperatures between 180 and 670 °C by devolatization, formation and condensation of different chemicals. Also, the Differential Scanning Calorimetry (DSC) graph displayed a glass transition temperature of 105 °C for extracted lignin. As a result, the extracted lignin with high purity can be a suitable candidate for carrying out value-added products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nadel S (2016) Pathway to cutting energy use and carbon emissions in half. American Council for an Energy-Efficient Economy, Washington, DC

    Google Scholar 

  2. Jefferson M (2016) A global energy assessment. Wiley Interdiscip Rev 5(1):7–15

    Google Scholar 

  3. Balakshin M, Capanema E, Berlin A (2014) Isolation and analysis of lignin–carbohydrate complexes preparations with traditional and advanced methods-Chapter 4, A Review

  4. Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82(5):815–827

    Article  CAS  PubMed  Google Scholar 

  5. Holladay J, Bozell J, White J, Johnson D (2007) Top value-added chemicals from biomass. DOE Report PNNL 2007; 16983.

  6. Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply 2005

  7. Hambardzumyan A (2014) Preparation of cellulose whiskers monolayers on water silicon surface by Langmuir-Blodgett technique. Chem Biol 3:13–18

    Google Scholar 

  8. Smook GA (1992) Handbook for pulp and paper technologists. Tappi, Peachtree Corners

    Google Scholar 

  9. Saad R, Hawari J (2013) Grafting of lignin onto nanostructured silica SBA-15: preparation and characterization. J Porous Mater 20(1):227–233

    Article  CAS  Google Scholar 

  10. Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10(1–2):39–48

    Article  CAS  Google Scholar 

  11. Sieminski A (2014) International energy outlook. Energy Information Administration (EIA), Washington, DC

    Google Scholar 

  12. Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86(11):2273–2282

    Article  CAS  Google Scholar 

  13. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37(1):19–27

    Article  CAS  Google Scholar 

  14. Argyropoulos DS (2016) High value lignin derivatives, polymers, and copolymers and use thereof in thermoplastic, thermoset, composite, and carbon fiber applications. US Patent 9,340,426

  15. Buranov AU, Mazza G (2009) Extraction and purification of ferulic acid from flax shives, wheat and corn bran by alkaline hydrolysis and pressurised solvents. Food Chem 115(4):1542–1548

    Article  CAS  Google Scholar 

  16. Yuan T, Xu F, Sun R (2013) Role of lignin in a biorefinery: separation characterization and valorization. J Chem Technol Biotechnol 88(3):346–352

    Article  CAS  Google Scholar 

  17. Delmas G, Benjelloun-Mlayah B, Bigot YL, Delmas M (2011) Functionality of wheat straw lignin extracted in organic acid media. J Appl Polym Sci 121(1):491–501

    Article  CAS  Google Scholar 

  18. Xu F, Sun J, Sun R, Fowler P, Baird MS (2006) Comparative study of organosolv lignins from wheat straw. Ind Crops Prod 23(2):180–193

    Article  CAS  Google Scholar 

  19. Xiao L, Shi Z, Xu F, Sun R (2012) Characterization of MWLs from Tamarix ramosissima isolated before and after hydrothermal treatment by spectroscopical and wet chemical methods. Holzforschung 66(3):295–302

    Article  CAS  Google Scholar 

  20. Derkacheva D, Sukhov D (2008) Investigation of lignins by FTIR spectroscopy. Wiley Online Library, Macromolecular Symposia

  21. McDonough TJ (1992) The chemistry of organosolv delignification. Tappi, Peachtree Corners

    Google Scholar 

  22. Sundquist J (1999) Organosolv pulping. Chemical pulping Helsink: Fapet Oy 404:405

  23. Sakakibara A (1980) A structural model of softwood lignin. Wood Sci Technol 14(2):89–100

    Article  CAS  Google Scholar 

  24. Ramezani N, Sain M (2017) Optimizing conditions for organosolv lignin extraction from wheat straw using data analysis approach (submitted)

  25. Huijgen W, Telysheva G, Arshanitsa A, Gosselink R, De Wild P (2014) Characteristics of wheat straw lignins from ethanol-based organosolv treatment. Ind Crops Prod 59:85–95

    Article  CAS  Google Scholar 

  26. Faix O (1991) Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45(s1):21–28

    Article  CAS  Google Scholar 

  27. Negrão DR, Sain M, Leão AL, Sameni J, Jeng R, de Jesus JP, Monteiro RT et al (2015) Fragmentation of lignin from organosolv black liquor by white rot fungi. BioResources 10(1):1553–1573

    Article  Google Scholar 

  28. Kline LM, Hayes DG, Womac AR, Labbe N (2010) Simplified determination of lignin content in hard and soft woods via UV-spectrophotometric analysis of biomass dissolved in ionic liquids. BioResources 5(3):1366–1383

    CAS  Google Scholar 

  29. Nimz H (1974) Beech lignin—proposal of a constitutional scheme. Angewandte Chemie International Edition in English 13(5):313–321

    Article  Google Scholar 

  30. Xiong Z, Zhang X, Wang H, Ma F, Li L, Li W (2007) Application of brown-rot basidiomycete Fomitopsis sp. IMER2 for biological treatment of black liquor. J Biosci Bioeng 104(6):446–450

    Article  CAS  PubMed  Google Scholar 

  31. Lundquist K (1992) Proton (1H) NMR spectroscopy. Methods in lignin chemistry. Springer, Berlin, pp 242–249

    Google Scholar 

  32. Lundquist K (1980) NMR studies of lignins. 4. Investigation of spruce lignin by 1H NMR spectroscopy. Acta Chem Scand B 34:21–26

    Article  Google Scholar 

  33. Gellerstedt G, Robert D (1987) Quantitative 13C NMR analysis of kraft lignins. Acta Chem Scand B 41(7):541–546

    Article  Google Scholar 

  34. Hawkes GE, Smith CZ, Utley JH, Vargas RR, Viertler H (1993) A comparison of solution and solid state 13C NMR spectra of lignins and lignin model compounds. Holzforschung 47(4):302–312

    Article  CAS  Google Scholar 

  35. Wen J, Sun S, Xue B, Sun R (2013) Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials 6(1):359–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. She D, Xu F, Geng Z, Sun R, Jones GL, Baird MS (2010) Physicochemical characterization of extracted lignin from sweet sorghum stem. Ind Crops Prod 32(1):21–28

    Article  CAS  Google Scholar 

  37. Saliba ED, Rodriguez NM, de Morais SA, Piló-Veloso D (2001) Ligninas: métodos de obtenção e caracterização química. Ciência Rural 31(5):917–928

    Article  Google Scholar 

  38. Wang S, Wang K, Liu Q, Gu Y, Luo Z, Cen K et al (2009) Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol Adv 27(5):562–567

    Article  CAS  PubMed  Google Scholar 

  39. Pan X, Kadla JF, Ehara K, Gilkes N, Saddler JN (2006) Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J Agric Food Chem 54(16):5806–5813

    Article  CAS  PubMed  Google Scholar 

  40. Sun R, Tomkinson J, Jones GL (2000) Fractional characterization of ash-AQ lignin by successive extraction with organic solvents from oil palm EFB fibre. Polym Degrad Stab 68(1):111–119

    Article  CAS  Google Scholar 

  41. El Hage R, Brosse N, Sannigrahi P, Ragauskas A (2010) Effects of process severity on the chemical structure of Miscanthus ethanol organosolv lignin. Polym Degrad Stab 95(6):997–1003

    Article  CAS  Google Scholar 

  42. Leschinsky M, Zuckerstätter G, Weber HK, Patt R, Sixta H (2008) Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure. Part 1: comparison of different lignin fractions formed during water prehydrolysis. Holzforschung 62(6):645–652

    CAS  Google Scholar 

  43. El Hage R, Brosse N, Chrusciel L, Sanchez C, Sannigrahi P, Ragauskas A (2009) Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polym Degrad Stab 94(10):1632–1638

    Article  CAS  Google Scholar 

  44. Hansen B, Kusch P, Schulze M, Kamm B (2016) Qualitative and quantitative analysis of lignin produced from beech wood by different conditions of the Organosolv process. J Polym Environ 24(2):85–97

    Article  CAS  Google Scholar 

  45. Sun F, Chen H (2008) Enhanced enzymatic hydrolysis of wheat straw by aqueous glycerol pretreatment. Bioresour Technol 99(14):6156–6161

    Article  CAS  PubMed  Google Scholar 

  46. Romaní A, Ruiz HA, Teixeira JA, Domingues L (2016) Valorization of Eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: an integrated and intensified approach. Renew Energy 95:1–9

    Article  CAS  Google Scholar 

  47. Domínguez J, Oliet M, Alonso M, Gilarranz M, Rodríguez F (2008) Thermal stability and pyrolysis kinetics of organosolv lignins obtained from Eucalyptus globulus. Ind Crops Products 27(2):150–156

    Article  CAS  Google Scholar 

  48. Wittkowski R, Ruther J, Drinda H, Rafiei-Taghanaki F (1992) Formation of smoke flavor compounds by thermal lignin degradation. ACS Publications, Washington, DC

    Book  Google Scholar 

  49. Glasser WG (2000) Classification of lignin according to chemical and molecular structure. ACS Publications, Washington, DC

    Google Scholar 

  50. Irvine G (1985) The significance of the glass transition of lignin in thermomechanical pulping. Wood Sci Technol 19(2):139–149

    Article  CAS  Google Scholar 

  51. Kaelble DH (1971) Physical chemistry of adhesion. Wiley, Hoboken

    Google Scholar 

  52. Aklonis JJ, Macknight WJ, Shen M (1972) Rubber elasticity. In: Introduction to polymer viscoelasticity, 2nd edn. Wiley, New York, pp 102–138

  53. Hu TQ (2002) Chemical modification, properties, and usage of lignin. Springer, Berlin

    Book  Google Scholar 

  54. Vallejos ME, Felissia FE, Cruvelo AA, Zambon MD, Ramos L, Area MC (2011) Chemical and physico-chemical characterization of lignins obtained from ethanol-water fractionation of bagasse. BioResources 6(2):pp 1158–1171

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the Natural Science and Engineering Research Council of Canada (NSERC) and Ontario Research Fund (ORF). We also thank Dr. Krishan Goel, who helped us a lot in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasim Ramezani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezani, N., Sain, M. Thermal and Physiochemical Characterization of Lignin Extracted from Wheat Straw by Organosolv Process. J Polym Environ 26, 3109–3116 (2018). https://doi.org/10.1007/s10924-018-1199-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1199-2

Keywords

Navigation