Skip to main content
Log in

Influence of Paper Content and Matrix Selection on the Porosity, Crystallinity and Water Uptake of Thermoplastic Paper Composites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Pulp and paper fibers have favorable reinforcement properties, such as constant fiber quality, while being widely available at low cost. However, they also have severe drawbacks related to water uptake and material degradation. In this work, paper was used for sustainable reinforcement in thermoplastic composite laminates, which were characterized by thermal analysis and moisture uptake tests. The porosity of the composite samples with varying paper content and matrix material was determined by thermogravimetric analysis and related to their water uptake. Polypropylene and polyamide 12 matrix composites had the lowest porosities, between 2 and 6 vol%, and thus comparatively low water uptake. Additionally, the influence of moisture uptake on the mechanical properties of the composites was investigated by tensile testing, which resulted in a significant decrease in modulus and strength in the wet state. After drying, however, 70–90% of the original tensile properties were regained. Additionally, a nucleating effect of the paper surface could be observed, which led to a linear increase in matrix crystallinity with increasing paper content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Witik RA, Teuscher R, Michaud V et al (2013) Carbon fibre reinforced composite waste: an environmental assessment of recycling, energy recovery and landfilling. Compos Part A 49:89–99. https://doi.org/10.1016/j.compositesa.2013.02.009

    Article  CAS  Google Scholar 

  2. Faruk O, Bledzki AK, Fink H-P et al (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299(1):9–26. https://doi.org/10.1002/mame.201300008

    Article  CAS  Google Scholar 

  3. Lundquist L (2003) Novel pulp fibre reinforced thermoplastic composites. Compos Sci Technol 63(1):137–152. https://doi.org/10.1016/S0266-3538(02)00192-6

    Article  CAS  Google Scholar 

  4. Malkapuram R, Kumar V, Negi YS (2009) Recent development in natural fiber reinforced polypropylene composites. J Reinf Plast Compos 28(10):1169–1189. https://doi.org/10.1177/0731684407087759

    Article  CAS  Google Scholar 

  5. Sgriccia N, Hawley MC, Misra M (2008) Characterization of natural fiber surfaces and natural fiber composites. Compos Part A 39(10):1632–1637. https://doi.org/10.1016/j.compositesa.2008.07.007

    Article  Google Scholar 

  6. Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics?. Compos Sci Technol 63(9):1259–1264. https://doi.org/10.1016/S0266-3538(03)00096-4

    Article  CAS  Google Scholar 

  7. Beg M, Pickering KL (2008) Accelerated weathering of unbleached and bleached Kraft wood fibre reinforced polypropylene composites. Polym Degrad Stab 93(10):1939–1946. https://doi.org/10.1016/j.polymdegradstab.2008.06.012

    Article  CAS  Google Scholar 

  8. Beg M, Pickering KL (2008) Mechanical performance of Kraft fibre reinforced polypropylene composites: influence of fibre length, fibre beating and hygrothermal ageing. Compos Part A 39(11):1748–1755. https://doi.org/10.1016/j.compositesa.2008.08.003

    Article  Google Scholar 

  9. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276–277(1):1–24. https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1:AID-MAME1>3.0.CO;2-W

    Article  Google Scholar 

  10. Azwa ZN, Yousif BF, Manalo AC et al (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442. https://doi.org/10.1016/j.matdes.2012.11.025

    Article  CAS  Google Scholar 

  11. Bledzki AK, Jaszkiewicz A (2010) Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres—a comparative study to PP. Compos Sci Technol 70(12):1687–1696. https://doi.org/10.1016/j.compscitech.2010.06.005

    Article  CAS  Google Scholar 

  12. Franco-Marquès E, Méndez JA, Pèlach MA et al (2011) Influence of coupling agents in the preparation of polypropylene composites reinforced with recycled fibers. Chem Eng J 166(3):1170–1178. https://doi.org/10.1016/j.cej.2010.12.031

    Article  Google Scholar 

  13. Huda M, Drzal L, Mohanty A et al. (2006) Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: a comparative study. Compos Sci Technol 66(11–12):1813–1824. https://doi.org/10.1016/j.compscitech.2005.10.015

    Article  CAS  Google Scholar 

  14. Vilaseca F, Méndez JA, López JP et al (2008) Recovered and recycled Kraft fibers as reinforcement of PP composites. Chem Eng J 138(1–3):586–595. https://doi.org/10.1016/j.cej.2007.07.066

    Article  CAS  Google Scholar 

  15. Serrano A, Espinach FX, Tresserras J et al (2014) Study on the technical feasibility of replacing glass fibers by old newspaper recycled fibers as polypropylene reinforcement. J Clean Prod 65:489–496. https://doi.org/10.1016/j.jclepro.2013.10.003

    Article  CAS  Google Scholar 

  16. Ren S, Hon DN-S (1993) Newspaper fiber-reinforced polypropylene composite. J Reinf Plast Compos 12(12):1311–1322. https://doi.org/10.1177/073168449301201205

    Article  CAS  Google Scholar 

  17. Sanadi AR, Young RA, Clemons C et al (1994) Recycled newspaper fibers as reinforcing fillers in thermoplastics: part I-analysis of tensile and impact properties in polypropylene. J Reinf Plast Compos 13(1):54–67. https://doi.org/10.1177/073168449401300104

    Article  CAS  Google Scholar 

  18. Du Y, Wu T, Yan N et al (2014) Fabrication and characterization of fully biodegradable natural fiber-reinforced poly(lactic acid) composites. Compos Part B 56:717–723. https://doi.org/10.1016/j.compositesb.2013.09.012

    Article  CAS  Google Scholar 

  19. Graupner N, Ziegmann G, Wilde F et al (2016) Procedural influences on compression and injection moulded cellulose fibre-reinforced polylactide (PLA) composites: influence of fibre loading, fibre length, fibre orientation and voids. Compos Part A 81:158–171. https://doi.org/10.1016/j.compositesa.2015.10.040

    Article  CAS  Google Scholar 

  20. Bourban Ch., Karamuk E, de Fondaumière MJ et al (1997) Processing and characterization of a new biodegradable composite made of a PHB/V matrix and regenerated cellulosic fibers. J Environ Polymer Degrad 5(3):159–166

    CAS  Google Scholar 

  21. Schwarz I, Stranz M, Bonnet M et al (2001) Changes of mechanical properties in cold-crystallized syndiotactic polypropylenne during aging. Colloid Polym Sci 279:506–512

    Article  CAS  Google Scholar 

  22. Schubnell M Bestimmung der Kristallinität bei Polymeren aus DSC-Messungen. Metter Toledo UserCom 1/2001

  23. Hofenauer A (2009) Funktionalisierung von Papieren durch Füllstoffe. Wochenbl Papierfabr 137(6–7):254–257

    CAS  Google Scholar 

  24. Prambauer M, Paulik C, Burgstaller C (2016) Evaluation of the interfacial properties of polypropylene composite laminates, reinforced with paper sheets. Compos Part A 88:59–66. https://doi.org/10.1016/j.compositesa.2016.05.016

    Article  CAS  Google Scholar 

  25. Prambauer M, Paulik C, Burgstaller C (2016) Interlaminar interaction in paper thermoplastic laminate composites. IOP Conf Ser 139:12042. https://doi.org/10.1088/1757-899X/139/1/012042

    Article  Google Scholar 

  26. Iyer KA, Lechanski J, Torkelson JM (2016) Green polypropylene/waste paper composites with superior modulus and crystallization behavior: Optimizing specific energy in solid-state shear pulverization for filler size reduction and dispersion. Compos Part A 83:47–55. https://doi.org/10.1016/j.compositesa.2015.09.011

    Article  CAS  Google Scholar 

  27. Mathew AP, Oksman K, Sain M (2006) The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J Appl Polym Sci 101(1):300–310. https://doi.org/10.1002/app.23346

    Article  CAS  Google Scholar 

  28. Assouline E, Pohl S, Fulchiron R et al (2000) The kinetics of α and β transcrystallization in fibre-reinforced polypropylene. Polymer 41(21):7843–7854. https://doi.org/10.1016/S0032-3861(00)00113-0

    Article  CAS  Google Scholar 

  29. Prambauer M, Paulik C, Burgstaller C (2015) The influence of paper type on the properties of structural paper—polypropylene composites. Compos Part A 74:107–113. https://doi.org/10.1016/j.compositesa.2015.04.004

    Article  CAS  Google Scholar 

  30. Biermann CJ (1996) Handbook of pulping and papermaking, 2nd ed. Academic Press, San Diego

    Google Scholar 

  31. Tejado A, van de Ven TG (2010) Why does paper get stronger as it dries?. Mater Today 13(9):42–49. https://doi.org/10.1016/S1369-7021(10)70164-4

    Article  Google Scholar 

  32. Ianson S, Sampson W (2007) Competing Weibull and stress-transfer influences on the specific tensile strength of a bonded fibrous network. Compos Sci Technol 67(7–8):1650–1658. https://doi.org/10.1016/j.compscitech.2006.07.002

    Article  CAS  Google Scholar 

  33. Hubbe MA (2006) Bonding between cellulosic fibers in the absence and presence of dry-strength agents—a review. BioResources 1(2):281–318

    Google Scholar 

  34. Magnusson MS, Zhang X, Östlund S (2013) Experimental evaluation of the interfibre joint strength of papermaking fibres in terms of manufacturing parameters and in two different loading directions. Exp Mech 53(9):1621–1634. https://doi.org/10.1007/s11340-013-9757-y

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Austrian Research Promotion Agency (FFG, Austria) for financial support of the project “Structural Paper-Thermoplastic Composites” in the scheme of “Industry-oriented Dissertation”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Prambauer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prambauer, M., Paulik, C. & Burgstaller, C. Influence of Paper Content and Matrix Selection on the Porosity, Crystallinity and Water Uptake of Thermoplastic Paper Composites. J Polym Environ 26, 2007–2017 (2018). https://doi.org/10.1007/s10924-017-1098-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1098-y

Keywords

Navigation