Skip to main content
Log in

Contribution of Catalytic Transesterification Reactions to the Compatibilization of Poly(lactic acid)/Polycarbonate Blends: Thermal, Morphological and Viscoelastic Characterization

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Samarium acetylacetonate (Sm-Acac) was added to catalyze interchange reactions between poly(lactic acid) (PLA) and polycarbonate (PC) in order to promote compatibilization and enhance the performances of the PLA/PC blend. The effects of the composition and catalyzed transesterification reactions were investigated using differential scanning calorimetry (DSC), thermogravimetry (TG), dynamic mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM). DMTA and DSC analysis revealed the immiscibility of the uncatalyzed PLA/PC blends for the studied compositions because the glass transition temperatures of PC and PLA were unchanged after blending. In the PLA glassy region, PLA/PC blends exhibited lower storage moduli which increased upon heating due to the cold crystallization process. During melt mixing with Sm-Acac catalyst, PLA/PC blends were submitted to two competing processes. In one hand, Sm-Acac acted as a plasticizer and contributed in decreasing significantly the glass transition, crystallization and melting temperatures of PLA phase. In the other hand, Sm-Acac proved its efficiency in catalyzing the transesterification reactions that were evidenced by the decrease of the PLA aptitude to crystallization due to the hindering effect of the PC units inserted into the PLA chains. PLA/PC blends melt mixed with 0.25% of Sm-Acac showed a significant strengthening effect, corresponding to an increase in the storage modulus in the temperature range comprised between 70 and 90 °C. This indicated the formation of a copolymer at the interface and the promotion of adhesion as it is confirmed from the decrease in the height of the PLA Tan δ peak. At 0.5% of Sm-Acac, (90/10) PLA/PC blend revealed a new peak assigned to the glass transition of the PLA-PC copolymer, whereas the (50/50) PLA/PC blend was converted into a new random copolymer. TG analysis proved the presence of a copolymer structure presenting an intermediate thermal stability in both the catalyzed and uncatalyzed blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Molinaro S, Cruz Romer M, Boaro M, Sensidoni A, Lagazio C, Morris M, Kerry J (2013) J Food Eng 117:113

    Article  CAS  Google Scholar 

  2. Lai SM, Wu SH, Lin GG, Don TM (2014) Eur Polym J 52:193

    Article  CAS  Google Scholar 

  3. Okamoto K, Toshima K, Matsumura S (2005) Macromol Biosci 5:813

    Article  CAS  Google Scholar 

  4. Chang JH, An YU, G. Sur (2003) J Polym Sci 41:94

    Article  CAS  Google Scholar 

  5. Ray SS, Okamoto M (2003) J Polym Sci 28:1539

    CAS  Google Scholar 

  6. Frone AN, Berlioz S, Chailan JF, Panaitescus DM (2013) Carbohydr Polym 91:377

    Article  CAS  Google Scholar 

  7. Armentano I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R, Lopez-Manchado MA, Kenny JM (2013) Prog Polym Sci 38:1720

    Article  CAS  Google Scholar 

  8. Fortunati E, Luzi F, Puglia D, Dominici F, Santulli C, Kenny JM, Torre L (2014) Eur Polym J 56:77

    Article  CAS  Google Scholar 

  9. Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM (2012) Polym Degrad Stab 97:2027

    Article  CAS  Google Scholar 

  10. Nan Wang Y, Xuan Weng Y, Wang L (2014) Polym Test 36:119

    Article  Google Scholar 

  11. Araújo A, Botelho G, Oliveira M, Machado AV (2014) Appl Clay Sci 88–89:144

    Article  Google Scholar 

  12. Rasal RM, Janorkar AV, Hirt DE (2010) Prog Polym Sci 35:338

    Article  CAS  Google Scholar 

  13. Torres-Huerta AM, Palma-Ramírez D, Domínguez-Crespo MA, Del Angel-López D, de la Fuente D (2014) Eur Polym J 61:285

    Article  CAS  Google Scholar 

  14. H. Chen, M. Pyda, P. Cebe (2009) Thermochim Acta 492:61.

    Article  CAS  Google Scholar 

  15. Khankrua R, Piva-Art S, Hiroyuki H, Suttiruengwong S (2014) Polym Degrad Stab 108:232

    Article  CAS  Google Scholar 

  16. G Biresaw, CJ Carriere (2004) Compos Part A 35:313.

    Article  Google Scholar 

  17. Brito GF, Agrawal P, Araújo EM, de Mélo TJA (2012) Polímeros 22:427.

  18. Jiang L, Wolcott MP, Zhang JW (2006) Biomacromolecules 7:199

    Article  Google Scholar 

  19. Meaurio E, Zuza E, Sarasua JR (2005) Macromolecules 38:9221

    Article  CAS  Google Scholar 

  20. Ayana B, Suin S, Khatua BB (2014) Carbohydr Polym 110:430

    Article  Google Scholar 

  21. Malwela T, Ray SS (2012) Polymer 53:2705

    Article  CAS  Google Scholar 

  22. T. J.A. Mélo, Araújo EM, Brito GF, Agrawal P (2013) J Alloys Compd 615:389

    Article  Google Scholar 

  23. Hashima K, Nishitsuji S, Inoue T (2010) Polymer 51:3934

    Article  CAS  Google Scholar 

  24. H. Zhao, Z. Cui, X. Wang, L.S. Turng, X. Peng (2013) Compos Part B 51:79.

    Article  CAS  Google Scholar 

  25. Yang SL, Wu ZH, Yang W, Yang MB (2008) Polym Test 27:957

    Article  CAS  Google Scholar 

  26. Jiang L, Zhang J, Wolcott MP (2007) Polymer 48:7632

    Article  CAS  Google Scholar 

  27. Fukishima K, Tabuani D, Areana M, Gennari M, Camino G (2013) React Funct Polym 73:540

    Article  Google Scholar 

  28. Hong N, Song L, Hu W, Hu Y (2013) Procedia Eng 62:366

    Article  CAS  Google Scholar 

  29. Badrinarayanan P, Ko FK, Wang C, Richard BA, Kessler MR (2014) Polym Test 35:1

    Article  CAS  Google Scholar 

  30. Cele HM, Ojijo V, Chen H, Kumar S, K. Land T, Joubert T, de Villiers MFR, Ray SS (2014) Polym Test 36:24

    Article  CAS  Google Scholar 

  31. Żenkiewicz M, Richert J, Różański A (2010) Appl Clay Sci 29:251

    Google Scholar 

  32. Picard E, Espuche E, Fulchiron R (2011) Appl Clay Sci 53:58

    Article  CAS  Google Scholar 

  33. R. Liu, S. Luo, J. Cao, Y. Peng (2013) Compos Part A 51:33.

    Article  CAS  Google Scholar 

  34. Rahman MA, Santis DD, Spagnoli G, Ramorino G, Penco M, Phuong VT, Lazzeri A (2012) J Appl Polym Sci 10:38705

    Google Scholar 

  35. Gordobil O, Egués I, Llano-Ponte R, Labidi J (2014) Polym Degrad Stab 108:1

    Article  Google Scholar 

  36. Shi Q, Zhoub C, Yueb Y, Guoa W, Wuc Y, Wub Q (2012) Carbohydr Polym 90:301

    Article  CAS  Google Scholar 

  37. Abdulkhani A, Hosseinzideh J, Ashori A, Dadashi S, Takzare Z (2014) Polym Test 35:73

    Article  CAS  Google Scholar 

  38. Koutsomitopoulou AF, Bénézet JC, Bergeret A, Papanicolaou GC (2014) Powder Technol 255:10

    Article  CAS  Google Scholar 

  39. Pantani R, Gorrasi G, Vigliotta G, Murariu M, Dubois P (2013) Eur Polym J 49:3471

    Article  CAS  Google Scholar 

  40. Nakayama N, Hayashi T (2007) Polym Degrad Stab 92:1255

    Article  CAS  Google Scholar 

  41. Lee JB, Lee YK, Choi GD, Na SW, Park TS, Kim WN (2011) Polym Degrad Stab 96:553

    Article  CAS  Google Scholar 

  42. Phuong VT, Coltelli MB, Cinelli P, Cifelli M, Verstichel S, Lazzeri A (2014) Polymer 55:4498

    Article  CAS  Google Scholar 

  43. Liu C, Lin S, Zhou C, Yu W (2013) Polymer 53:313

    CAS  Google Scholar 

  44. Guessoum M, Haddaoui N (2006) Intern J Polym Mater 55:715.

    Article  CAS  Google Scholar 

  45. Guessoum M, Fenouillot-Rimilinger F, Haddaoui N (2008) Intern J Polym Mater 57:657.

    Article  CAS  Google Scholar 

  46. Guessoum M, Nekkaa S, Haddaoui N (2008) Intern J Polym Mater 57:759.

    Article  CAS  Google Scholar 

  47. Ignatov VN, Carraro C, Tartari V, Pippa R, Scapin M, Pilati F, Berti C, Toselli M, Fiorini M (1997) Polymer 38:195

    Article  CAS  Google Scholar 

  48. Ignatov VN, Carraro C, Tartari V, Pippa R, Scapin M, Pilati F, Berti C, Toselli M, Fiorini M (1997) Polymer 38:201

    Article  CAS  Google Scholar 

  49. Berti C, Bonora V, Pilati F, Fiorini M (2002) Makromol Chem 193:1665.

    Article  Google Scholar 

  50. Fiorini M, Berti C, Ignatov VN, Toselli M, Pilati F (1995) J Appl Polym 55:1157

    Article  CAS  Google Scholar 

  51. Fiorini M, Pilati F, Berti C, Toselli M, Ignatov VN (1997) Polymer 38:413

    Article  CAS  Google Scholar 

  52. Ignatov VN, Carraro C, Tartari V, Pippa R, Pilati F, Berti C, Toselli M, Fiorini M (1996) Polymer 37:5883

    Article  CAS  Google Scholar 

  53. Marchese P, Celli A, Fiorini M (2002) Macromol Chem Phys 203:695

    Article  CAS  Google Scholar 

  54. Zhang JM, Tashiro K, Tsuji H, Domb JA (2008) Macromolecules 41:1352

    Article  CAS  Google Scholar 

  55. Zhang J, Duan Y, Sato H, Tsuji H, Noda I, Yan S, Ozaki Y (2005) Macromolecules 38:8012

    Article  CAS  Google Scholar 

  56. Djellali S, Sadoun T, Haddaoui N (2015) Polym Bull 72:1177.

    Article  CAS  Google Scholar 

  57. Pluta M (2014) Polymer 45:8239

    Article  Google Scholar 

  58. Pluta M, Murariu M, Alexandre M, Galeski A, Dubois P (2008) Polym Degrad Stab 93:925

    Article  CAS  Google Scholar 

  59. Silverajah VS, Ibrahim AN, Yunus WZW, Hassan HA, Woei CB (2012) Intern J Molecul Sci 13:5878.

    Article  CAS  Google Scholar 

  60. Chen HM, Chen J, Yang LN, Huang T, Zhang N, Wang Y (2013) J Polym Sci Part B 51:183.

    Article  CAS  Google Scholar 

  61. Martınez-Hernandez AL, Velasco-Santos C, de-Icaza M, Castano VM (2007) Compos Part B 38:405.

    Article  Google Scholar 

  62. Keusch S, Haessler R (1999) Compos Part A 30:997.

    Article  Google Scholar 

  63. Shieh YT, Lin YS, Twu YK, Tsai HB, Lin RH (2010) J Appl Polym Sci 116:1334

    CAS  Google Scholar 

  64. Ismail HM (1995) Colloids Surf A 97:247.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melia Guessoum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chelghoum, N., Guessoum, M., Fois, M. et al. Contribution of Catalytic Transesterification Reactions to the Compatibilization of Poly(lactic acid)/Polycarbonate Blends: Thermal, Morphological and Viscoelastic Characterization. J Polym Environ 26, 342–354 (2018). https://doi.org/10.1007/s10924-017-0950-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-0950-4

Keywords

Navigation