Skip to main content
Log in

Chitosan Coated Cotton Fiber: Physical and Antimicrobial Properties for Apparel Use

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Cotton is a popular clothing material all over the globe due to its flexibility, absorbency, versatility and breathability but some intrinsic limitations such as wrinkle formation, shrinkage and microbial degradation have restricted its much wider applications as apparel fabric. These negative aspects of cotton fiber may be overcome by surface modification with chitosan. This paper explores the use of chitosan for the treatment of cotton fabric to enhance its physical and antimicrobial characteristics for apparel use. The treatment was carried out by applying different concentrations, such as 0.25, 0.5, 1.0 and 1.5 % of chitosan solution on the fiber. Then the performance of treated fabric samples were evaluated in terms of their tensile strength and elongation, drapability, wrinkle recovery, abrasion resistance and antibacterial characteristics. The detailed experimental results have demonstrated that the treatment with chitosan can significantly enhance the antibacterial activity of cotton fiber against Staphylococcus aureus and Escherichia coli. Moreover, the improvement was also observed in case of physical characteristics such as abrasion resistance and crease recovery property of treated fabric samples. However, a slight deterioration in strength, elongation and handle characteristics of treated samples was observed compared to untreated samples probably caused by acidic treatment and the surface coating on fiber following chitosan treatment. Since a small reduction in strength and softness does not overshadow greatly the overall improved performance of treated fabrics, the application of chitosan to cotton fiber is a potential approach to get the desired physical and antimicrobial property for apparel use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bashar MM, Khan MA (2013) J Polym Environ 21(1):181–190

    Article  Google Scholar 

  2. Bhuiyan MR, Shaid A, Khan MA (2014) Chem Mater Eng 2(4):96–100

    CAS  Google Scholar 

  3. Bledzki AK, Gassan J (1999) Prog Polym Sci 24(2):221–274

    Article  CAS  Google Scholar 

  4. Broadbent AD (2001) Basic Principles of Textile Coloration. Society of Dyers and Colorists, West Yorkshire

    Google Scholar 

  5. Lam YL, Kan CW, Yuen CWM (2012) Text Prog 44(3–4):175–249

    Article  Google Scholar 

  6. El-Tahlawy KF, El-Bendary MA, Elhendawy AG, Hudson SM (2005) Carbohydr Polym 60(4):421–430

    Article  CAS  Google Scholar 

  7. Li Q, Dunn ET, Grandmaison EW, Goosen MFA (1992) J Bioact Compat Polym 7(4):370–397

    Article  CAS  Google Scholar 

  8. El-Shafei AM, Fouda MM, Knittel D, Schollmeyer E (2008) J Appl Polym Sci 110(3):1289–1296

    Article  CAS  Google Scholar 

  9. Al Sagheer FA, Al-Sughayer MA, Muslim S, Elsabee MZ (2009) Carbohydr Polym 77(2):410–419

    Article  CAS  Google Scholar 

  10. Prashanth KH, Kittur FS, Tharanathan RN (2002) Carbohydr Polym 50(1):27–33

    Article  Google Scholar 

  11. Suntornsuk W, Pochanavanich P, Suntornsuk L (2002) Process Biochem 37(7):727–729

    Article  CAS  Google Scholar 

  12. Bhuiyan MR, Shaid A, Bashar MM, Haque P, Hannan MA (2013) Open J Org Polym Mater 3(4):87–91

    Article  Google Scholar 

  13. Chou CK, Chen SM, Li YC, Huang TC, Lee JA (2015) SpringerPlus 4(1):1–7

    Article  CAS  Google Scholar 

  14. Houshyar S, Amirshahi SH (2002) Iran Polym J 11(5):295–301

    CAS  Google Scholar 

  15. Lee SH, Kim MJ, Park H (2010) J Appl Polym Sci 117(2):623–628

    Article  CAS  Google Scholar 

  16. Klaykruayat B, Siralertmukul K, Srikulkit K (2010) Carbohydr Polym 80(1):197–207

    Article  CAS  Google Scholar 

  17. Lim SH, Hudson SM (2004) Carbohydr Res 339(2):313–319

    Article  CAS  Google Scholar 

  18. Zheng LY, Zhu JF (2003) Carbohydr Polym 54(4):527–530

    Article  CAS  Google Scholar 

  19. Liu XD, Nishi N, Tokura S, Sakairi N (2001) Carbohydr Polym 44(3):233–238

    Article  CAS  Google Scholar 

  20. Saville BP (1999) Physical Testing of Textiles. Woodhead Publishing Limited, Cambridge

    Book  Google Scholar 

  21. Sanad R, Cassidy T, Cheung V, Evans E (2013) J Fiber Bioeng Inf 6(1):1–22

    Article  Google Scholar 

  22. Hu J (2008) Fabric Testing. Woodhead Publishing Limited, Cambridge

    Book  Google Scholar 

  23. Ferrero F, Periolatto M (2012) J Nanosci Nanotechnol 12(6):4803–4810

    Article  CAS  Google Scholar 

  24. Arif D, Niazi MBK, Ul-Haq N, Anwar MN, Hashmi E (2015) Fibers Polym 16(7):1519–1526

    Article  CAS  Google Scholar 

  25. Ferrero F, Periolatto M, Ferrario S (2015) J Clean Prod 96:244–252

    Article  CAS  Google Scholar 

  26. Sionkowska A, Wisniewski M, Skopinska J, Kennedy CJ, Wess TJ (2004) Biomaterials 25(5):795–801

    Article  CAS  Google Scholar 

  27. Jabli M, Baouab MHV, Roudesli MS, Bartegi A (2011) J Eng Fibers Fabr 6(3):1–12

    CAS  Google Scholar 

  28. Haddar W, Ticha MB, Guesmi A, Khoffi F, Durand B (2014) J Clean Prod 68:114–120

    Article  CAS  Google Scholar 

  29. Harzallah O, Benzina H, Drean JY (2010) Text Res J 80(11):1093–1102

    Article  CAS  Google Scholar 

  30. Hearle JW, Morton WE (2008) Physical Properties of Textile Fibres. Woodhead Publishing Limited, Cambridge

    Google Scholar 

  31. Gohl EPG, Vilensky LD (1983) Textile Science. Longman, Cheshire

    Google Scholar 

  32. Chattopadhyay DP, Inamdar MS (2013) Indian J Fibre Text Res 38(1):14–21

    CAS  Google Scholar 

  33. Wågberg L, Hägglund R (2001) Langmuir 17(4):1096–1103

    Article  Google Scholar 

  34. Jeong KM, Bae HS (2009) J Korean Soc Cloth Text 33(12):1873–1882

    Article  Google Scholar 

  35. Tomasino C (1992) Chemistry & Technology of Fabric Preparation & Finishing. North Carolina State University, North Carolina

    Google Scholar 

  36. Zemljič LF, Strnad S, Šauperl O, Stana-Kleinschek K (2009) Text Res J 79(3):219–226

    Article  Google Scholar 

  37. Abdullah I, Blackburn RS, Russell SJ, Taylor J (2006) J Appl Polym Sci 102:1391–1398

    Article  CAS  Google Scholar 

  38. Manich AM, Castellar MDD, Sauri RM, Miguel RA, Barella A (2001) Text Res J 71:469–474

    Article  CAS  Google Scholar 

  39. Zivanovic S, Basurto CC, Chi S, Davidson PM, Weiss J (2004) J Food Prot 67(5):952–959

    Article  CAS  Google Scholar 

  40. Kong M, Chen XG, Xing K, Park HJ (2010) Int J Food Microbiol 144(1):51–63

    Article  CAS  Google Scholar 

  41. Ferrero F, Periolatto M, Vineis C, Varesano A (2014) Carbohydr Polym 103:207–212

    Article  CAS  Google Scholar 

  42. Ploux L, Ponche A, Anselme K (2010) J Adhes Sci Technol 24(13–14):2165–2201

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Rahman Bhuiyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman Bhuiyan, M.A., Hossain, M.A., Zakaria, M. et al. Chitosan Coated Cotton Fiber: Physical and Antimicrobial Properties for Apparel Use. J Polym Environ 25, 334–342 (2017). https://doi.org/10.1007/s10924-016-0815-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0815-2

Keywords

Navigation