Skip to main content
Log in

Production and Characterization of Bioplastics Obtained by Injection Moulding of Various Protein Systems

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Bioplastic materials from renewable polymers, like proteins, constitute a highly interesting field for important industrial applications such as packaging, agriculture, etc., in which thermo-mechanical techniques are increasingly being used. This study assesses bioplastic materials produced by injection from blends previously prepared in a batch mixer using various protein concentrates and isolates. A mixing time of 5 min has been selected in order to ensure correct homogenous blends. A comparison between different protein-based specimens was performed by dynamic mechanical thermal analysis, tensile strength, water uptake and transmittance tests. The comparison reveals that the protein nature and the percentage of plasticizer lead to bioplastics with different properties and, consequently, different applications. Protein concentrates and isolates, wastes and surpluses from the food industry, may be useful for producing bioplastics with suitable mechanical properties and processability, as well as biodegradability, by means of suitable mixing and injection moulding conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sparke P (1990) The plastic age: from modernity to post modernity. B.A.S Printers, London

    Google Scholar 

  2. Walker JA, Attfield J (1990) Design history and the history of design. Pluto Press, London

    Google Scholar 

  3. Cleminshaw D (1989) Design in plastics. Rockport, Beverly

    Google Scholar 

  4. Karana E (2012) Characterization of “natural” and “high-quality” materials to improve perception of bio-plastics. J Clean Prod 37:316–325. doi:10.1016/j.jclepro.2012.07.034

    Article  Google Scholar 

  5. Averous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci Rev C44:231–274. doi:10.1081/mc-200029326

    Article  CAS  Google Scholar 

  6. Ke TY, Sun XZS (2003) Thermal and mechanical properties of poly(lactic acid)/starch/methylenediphenyl diisocyanate blending with triethyl citrate. J Appl Polym Sci 88:2947–2955. doi:10.1002/app.12112

    Article  CAS  Google Scholar 

  7. Yang Y, Zhang K, Song Y-H, Zheng Q (2011) Preparation and properties of wheat gluten/rice protein composites plasticized with glycerol. Chin J Polym Sci 29:87–92. doi:10.1007/s10118-010-9185-8

    Article  CAS  Google Scholar 

  8. Cuq B, Gontard N, Guilbert S (1998) Proteins as agricultural polymers for packaging production. Cereal Chem 75:1–9. doi:10.1094/cchem.1998.75.1.1

    Article  CAS  Google Scholar 

  9. Pommet M, Redl A, Morel MH, Guilbert S (2003) Study of wheat gluten plasticization with fatty acids. Polymer (Guildf) 44:115–122. doi:10.1016/s0032-3861(02)00746-2

    Article  CAS  Google Scholar 

  10. Zheng H, Tan ZA, Zhan YR, Huang J (2003) Morphology and properties of soy protein plastics modified with chitin. J Appl Polym Sci 90:3676–3682. doi:10.1002/app.12997

    Article  CAS  Google Scholar 

  11. González-Gutiérrez J, Partal P, García-Morales M, Gallegos C (2011) Effect of processing on the viscoelastic, tensile and optical properties of albumen/starch-based bioplastics. Carbohydr Polym 84:308–315. doi:10.1016/j.carbpol.2010.11.040

    Article  Google Scholar 

  12. Geiger W, Alcorlo P, Baltanas A, Montes C (2005) Impact of an introduced Crustacean on the trophic webs of Mediterranean wetlands. Biol Invasions 7:49–73. doi:10.1007/s10530-004-9635-8

    Article  Google Scholar 

  13. Kirjavainen J, Westman K (1999) Natural history and development of the introduced signal crayfish, Pacifastacus leniusculus, in a small, isolated Finnish lake, from 1968 to 1993. Aquat Living Resour 12:387–401. doi:10.1016/s0990-7440(99)00110-2

    Article  Google Scholar 

  14. Aguilar JM, Jaramillo A, Cordobes F, Guerrero A (2010) Influence of thermal processing on the rheology of egg albumen gels. Afinidad 67:28–32

    CAS  Google Scholar 

  15. Tian H, Wang Y, Zhang L et al (2010) Improved flexibility and water resistance of soy protein thermoplastics containing waterborne polyurethane. Ind Crops Prod 32:13–20. doi:10.1016/j.indcrop.2010.02.009

    Article  CAS  Google Scholar 

  16. Sun XZS, Kim HR, Mo XQ (1999) Plastic performance of soybean protein components. J Am Oil Chem Soc 76:117–123. doi:10.1007/s11746-999-0057-8

    Article  CAS  Google Scholar 

  17. Kowalczyk D, Baraniak B (2011) Effects of plasticizers, pH and heating of film-forming solution on the properties of pea protein isolate films. J Food Eng 105:295–305. doi:10.1016/j.jfoodeng.2011.02.037

    Article  CAS  Google Scholar 

  18. Ferrero A, Tinarelli A (2007) Chapter 1—rice cultivation in the EU ecological conditions and agronomical practices. In: Karpouzas EC (ed) Pesticide risk assessment in rice paddies. Elsevier, Amsterdam, pp 1–24

    Google Scholar 

  19. Njie M, Reed JD (1995) Potential of crop residues and agricultural by-products for feeding sheep in a gambian village. Anim Feed Sci Technol 52:313–323. doi:10.1016/0377-8401(94)00710-q

    Article  Google Scholar 

  20. Li J, Liu J, Liao S, Yan R (2010) Hydrogen-rich gas production by air–steam gasification of rice husk using supported nano-NiO/γ–Al2O3 catalyst. Int J Hydrogen Energy 35:7399–7404. doi:10.1016/j.ijhydene.2010.04.108

    Article  CAS  Google Scholar 

  21. Lukubira S, Ogale A (2015) Thermoformable Anhydride–Glycerol modified meat and bone meal bioplastics. J Polym Environ 23:517–525. doi:10.1007/s10924-015-0727-6

    Article  CAS  Google Scholar 

  22. Trujillo-de Santiago G, Rojas-de Gante C, García-Lara S et al (2015) Thermoplastic processing of blue maize and white sorghum flours to produce bioplastics. J Polym Environ 23:72–82. doi:10.1007/s10924-014-0708-1

    Article  CAS  Google Scholar 

  23. Genadios A (2002) Proteins based films and coting. CRC Press, New York

    Book  Google Scholar 

  24. Jerez A, Partal P, Martinez I et al (2007) Protein-based bioplastics: effect of thermo-mechanical processing. Rheol Acta 46:711–720. doi:10.1007/s00397-007-0165-z

    Article  CAS  Google Scholar 

  25. Cho S-W, Gällstedt M, Johansson E, Hedenqvist MS (2011) Injection-molded nanocomposites and materials based on wheat gluten. Int J Biol Macromol 48:146–152. doi:10.1016/j.ijbiomac.2010.10.012

    Article  CAS  Google Scholar 

  26. Etheridge RD, Pesti GM, Foster EH (1998) A comparison of nitrogen values obtained utilizing the Kjeldahl nitrogen and Dumas combustion methodologies (Leco CNS 2000) on samples typical of an animal nutrition analytical laboratory. Anim Feed Sci Technol 73:21–28. doi:10.1016/s0377-8401(98)00136-9

    Article  CAS  Google Scholar 

  27. Pearson AM, Hudson BJF (1983) Developments in food proteins, vol 2. Applied Science Publishers, London

    Google Scholar 

  28. AACC International. Approved methods of analysis, 11th edn. Method 44-15.02. Moisture—Air-Oven Methods. AACC International, St. Paul, MN

  29. AACC International. Approved methods of analysis, 11th edn. Method 08-01.01. Ash content—Basic Method. AACC International, St. Paul, MN

  30. ISO 527-2:2012. Plastics—Determination of tensile properties—Part 2: Test conditions for moulding and extrusion plastics, pp 527–532

  31. ASTM D570 - 98 (2010) Standard test method for water absorption of plastics

  32. Jerez A, Partal P, Martinez I et al (2007) Egg white-based bioplastics developed by thermomechanical processing. J Food Eng 82:608–617. doi:10.1016/j.jfoodeng.2007.03.020

    Article  CAS  Google Scholar 

  33. Chartoff RP (1997) Chemical principles. Academic Press, New York

    Google Scholar 

  34. Farahnaky A, Guerrero A, Hill SE, Mitchell JR (2008) Physical ageing of crayfish flour at low moisture contents. J Therm Anal Calorim 93:595–598. doi:10.1007/s10973-007-8655-x

    Article  CAS  Google Scholar 

  35. Rao Q, Labuza TP (2012) Effect of moisture content on selected physicochemical properties of two commercial hen egg white powders. Food Chem 132:373–384

    Article  CAS  Google Scholar 

  36. Guerrero P, de la Caba K (2010) Thermal and mechanical properties of soy protein films processed at different pH by compression. J Food Eng 100:261–269. doi:10.1016/j.jfoodeng.2010.04.008

    Article  CAS  Google Scholar 

  37. Ju ZY, Hettiarachchy NS, Rath N (2001) Extraction, denaturation and hydrophobic properties of rice flour proteins. J Food Sci 66:229–232. doi:10.1111/j.1365-2621.2001.tb11322.x

    Article  CAS  Google Scholar 

  38. Liu WJ, Misra M, Askeland P et al (2005) “Green” composites from soy based plastic and pineapple leaf fiber: fabrication and properties evaluation. Polymer (Guildf) 46:2710–2721. doi:10.1016/j.polymer.2005.01.027

    Article  CAS  Google Scholar 

  39. Paetau I, Chen CZ, Jane JL (1994) Biodegradable plastic made from soybean products. 1. Effect of preparation and processing on mechanical-properties and water-absorption. Ind Eng Chem Res 33:1821–1827. doi:10.1021/ie00031a023

    Article  CAS  Google Scholar 

  40. Tummala P, Liu W, Drzal LT et al (2006) Influence of plasticizers on thermal and mechanical properties and morphology of soy-based bioplastics. Ind Eng Chem Res 45:7491–7496. doi:10.1021/ie0604391

    Article  CAS  Google Scholar 

  41. Martin-Alfonso JE, Felix M, Romero A, Guerrero A (2014) Development of new albumen based biocomposites formulations by injection moulding using chitosan as physicochemical modifier additive. Compos B Eng 61:275–281. doi:10.1016/j.compositesb.2014.01.057

    Article  CAS  Google Scholar 

  42. Tang C-H (2008) Thermal denaturation and gelation of vicilin-rich protein isolates from three Phaseolus legumes: a comparative study. Lwt Food Sci Technol 41:1380–1388. doi:10.1016/j.lwt.2007.08.025

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is part of a research project sponsored by Andalousian Government, (Spain) (project TEP-6134) and by “Ministerio de Economía y Competitividad” from Spanish Government (Ref. MAT2011-29275-C02-02/01). The authors gratefully acknowledge their financial support. The authors also acknowledge to the Microanalysis Service and Functional Characterisation Service (CITIUS-Universidad de Sevilla) for providing full access and assistance to the LECO-CHNS-932 and DSC Q20 Calorymetry (TA instruments), respectively. The authors also thank University of Seville for the grant of the VPPI-US.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Perez-Puyana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felix, M., Perez-Puyana, V., Romero, A. et al. Production and Characterization of Bioplastics Obtained by Injection Moulding of Various Protein Systems. J Polym Environ 25, 91–100 (2017). https://doi.org/10.1007/s10924-016-0790-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0790-7

Keywords

Navigation