Skip to main content
Log in

Effect of Hot Drawing on the Mechanical Properties of Biodegradable Fibers

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The use of biodegradable polymers is increasingly attracting interest over the last years, since they can reduce the environmental effects related to disposal of traditional plastics and, in general, the use of fossil, non-renewable resources. One of the most promising applications is represented by fibers production. However, the orientation and the crystallinity degrees can significantly affect the mechanical properties. Therefore, it is of interest to investigate on the optimum processing conditions, in order to improve the mechanical properties. In particular, while crystallinity can be slightly modified by the processing, orientation can be significantly improved. In this work, the effects of hot stretching on the mechanical and structural properties of fibers made from two different families of biodegradable blends were investigated. The orientation proved to significantly change the mechanical properties, and it was shown that factors such as the different relaxation times, the different crystallization temperatures and the cooling rate can give opposite effects in the three investigated polymer systems with significant consequences on the mechanical behaviour of the fibers. In particular, the behaviour during fiber production in hot stretching, and the orientation mechanisms were studied and explained on the basis of rheological and thermal properties of the polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335

    Article  CAS  Google Scholar 

  2. An Tran NH, Brünig H, Hinüber C, Heinrich G (2014) Melt spinning of biodegradable nanofibrillary structures from poly(lactic acid) and poly(vinyl alcohol). Macromol Mat Eng 299:219–227

    Article  Google Scholar 

  3. Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: an overview. Prog Polym Sci 32:455–482

    Article  CAS  Google Scholar 

  4. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852

    Article  CAS  Google Scholar 

  5. Eling B, Gogolewski S, Pennings AJ (1982) Biodegradable materials of poly(l-lactic acid): 1. Melt-spun and solution-spun fibers. Polymer 23:1587–1593

    Article  CAS  Google Scholar 

  6. Fambri L, Pegoretti A, Fenner R, Incardona SD, Migliaresi C (1997) Biodegradable fibers of poly(L-lactic acid) produced by melt spinning. Polymer 38:79–85

    Article  CAS  Google Scholar 

  7. Yuan X, Mak AFT, Kwok KW, Yung BKO, Yao K (2001) Characterization of poly(L-lactic acid) fibers produced by melt spinning. J Appl Polym Sci 81:251–260

    Article  CAS  Google Scholar 

  8. Postema AR, Pennings AJ (1989) Study on the drawing behavior of poly(L-lactide) to obtain high-strength fibers. J Appl Polym Sci 37:2351–2369

    Article  CAS  Google Scholar 

  9. Gupta B, Revagade N, Anjum N, Atthoff B, Hilborn J (2006) Preparation of poly(lactic acid) fiber by dry-jet-wet-spinning. I. Influence of draw ratio on fiber properties. J Appl Polym Sci 100:1239–1246

    Article  CAS  Google Scholar 

  10. Kim MS, Kim JC, Kim YH (2008) Effects of take-up speed on the structure and properties of melt-spun poly(L-lactic acid) fibers. Polym Adv Technol 19:748–755

    Article  CAS  Google Scholar 

  11. Schmack C, Jehnichen D, Vogel R, Tändler B (2000) Biodegradable fibers of poly(3-hydroxybutyrate) produced by high-speed melt spinning and spin drawing. J Polym Sci Part B Polym Phys 38:2841–2850

    Article  CAS  Google Scholar 

  12. Lu L, Wu D, Zhang M, Zhou W (2012) Fabrication of polylactide/poly(ε-caprolactone) blend fibers by electrospinning: morphology and orientation. Ind Eng Chem Res 51:3682–3691

    Article  CAS  Google Scholar 

  13. Marrucci G (1975) Limiting concepts in extensional flow. Polym Eng Sci 15:229–234

    Article  CAS  Google Scholar 

  14. Ziabicki A (1993) Orientation mechanisms in the development of high-performance fibers. Prog Coll Polym Sci 92:1–7

    Article  CAS  Google Scholar 

  15. Arbab S, Nosratian E, Zeinolebadi A, Mojtahedi MM, Shoshtari AM (2011) The effects of melt-spinning temperature and take-up speed on the physical and mechanical properties of as-spun polypropylene filaments. In: Haghi AK (ed) Recent progress in chemistry and chemical engineering research. Nova Science Publishers, Hauppauge, NY, pp 47–57

    Google Scholar 

  16. Mount EM (2012) Oriented films-troubleshooting and characterization. In: Wagner JR (ed) Handbook of troubleshooting plastics processes: a practical guide. Wiley, Hoboken, NJ, pp 133–165

    Chapter  Google Scholar 

  17. Devaux E (2014) Understanding the behavior of synthetic polymer fibers during spinning. In: Zhang D (ed) Advances in filament yarn spinning of textiles and polymers. Woodhead Publishing Limited, Sawston, pp 31–47

    Chapter  Google Scholar 

  18. Younes B, Fotheringham A, El-Dessouky HM, Haddad G (2011) Factorial optimization of the effects of melt-spinning conditions on as-spun aliphatic-aromatic copolyester fibers I. Spin draw ratio, overall orientation and drawability. Int J Polym Mat Polym Biomat 60:316–339

    Article  CAS  Google Scholar 

  19. Cicero JA, Dorgan JR, Garrett J, Runt J, Lin JS (2002) Effect of molecular architecture on two-step, melt-spun poly(lactic acid) fibers. J Appl Polym Sci 86:2839–2846

    Article  CAS  Google Scholar 

  20. Cicero JA, Dorgan JR, Janzen J, Garrett J, Runt J, Lin JS (2002) Supramolecular morphology of two-step, melt-spun poly (lactic acid) fibers. J Appl Polym Sci 86:2828–2838

    Article  CAS  Google Scholar 

  21. Postema AR, Luiten AH, Oostra H, Pennings AJ (1990) High strength poly(L-lactide) fibers by a dry-spinning/hot drawing process. II. Influence of the extrusion speed and winding speed on the dry spinning process. J Appl Polym Sci 39:1275–1288

    Article  CAS  Google Scholar 

  22. La Mantia FP, D’Amico R, Acierno D (1979) Uniaxial hot stretching of polystyrene and mechanical properties of the oriented samples. Acta Polym 30:685–691

    Article  Google Scholar 

  23. La Mantia FP, Fontana P, Morreale M, Mistretta MC (2014) Orientation induced brittle–ductile transition in a polyethylene/polyamide 6 blend. Polym Test 36:20–23

    Article  Google Scholar 

  24. Kucharczyk P, Otgonzu O, Kitano T, Gregorova A, Kreuh D, Cvelbar U, Sedlarik V, Saha P (2012) Correlation of morphology and viscoelastic properties of partially biodegradable polymer blends based on polyamide 6 and polylactide copolyester. Polym Plast Technol Eng 51:1432–1442

    Article  CAS  Google Scholar 

  25. Sedlarik V, Otgonzul O, Kitano T, Gregorova A, Hrabalova M, Junkar I, Cvelbar U, Mozetic M, Saha P (2012) Effect of phase arrangement on solid state mechanical and thermal properties of polyamide 6/polylactide based co-polyester blends. J Macromol Sci Part B Phys 51:982–1001

    Article  CAS  Google Scholar 

  26. Morreale M, Mistretta MC, Ceraulo M, La Mantia FP (2014) Rheological behavior under shear and non-isothermal elongational flow of biodegradable polymers for foam extrusion. J Polym Environ 22:112–118

    Article  CAS  Google Scholar 

  27. Bastioli C (1998) Properties and applications of mater-Bi starch-based materials. Polym Degrad Stab 59:263–272

    Article  CAS  Google Scholar 

  28. Gregorova A, Riedl E, Sedlarik V, Stelzer F (2012) Effect of 4,4′-methylenediphenyl diisocyanate on thermal and mechanical properties of Bioflex/lactic acid polycondensate blends. Asia Pac J Chem Eng 7:317–323

    Article  Google Scholar 

  29. Mistretta MC, Ceraulo M, La Mantia FP, Morreale M (2015) Compatibilization of polyethylene/polyamide 6 blend nanocomposite films. Polym Compos 36:992–998

    Article  CAS  Google Scholar 

  30. Wissbrun KF (1981) Rheology of rod-like polymers in the liquid crystalline state. J Rheol 25:619

    Article  CAS  Google Scholar 

  31. La Mantia FP, Arrigo R, Morreale M (2014) Effect of the orientation and rheological behaviour of biodegradable polymer nanocomposites. Eur Polym J 54:11–17

    Article  Google Scholar 

  32. Krishnamoorti R, Yurekli K (2001) Rheology of polymer layered silicate nanocomposites. Curr Opin Coll Interface Sci 6:464–470

    Article  CAS  Google Scholar 

  33. Ren J, Krishnamoorti R (2003) Nonlinear viscoelastic properties of layered-silicate-based intercalated nanocomposites. Macromolecules 36:4443–4451

    Article  CAS  Google Scholar 

  34. Tagaya A (2015) Birefringence of polymer. In: Kobayashi S, Müllen K (eds) Encyclopedia of polymeric nanomaterials. Springer, Berlin, Heidelberg

    Google Scholar 

  35. Gedde U (1999) Polymer physics. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Morreale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La Mantia, F.P., Ceraulo, M., Mistretta, M.C. et al. Effect of Hot Drawing on the Mechanical Properties of Biodegradable Fibers. J Polym Environ 24, 56–63 (2016). https://doi.org/10.1007/s10924-015-0747-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-015-0747-2

Keywords

Navigation