Skip to main content
Log in

Thermally Initiated Trans-esterification in Poly(ε-caprolactone) and Its Dependence on Molecular Weight

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Biodegradability and biocompatibility of poly(ε-caprolactone) (PCL) are the prime properties which advanced the use of this polymer in fields of tissue engineering and biomedicals. Being an aliphatic polyester, PCL is prone to undergo trans-esterification which is one of the mechanisms reported for its degradation besides being used in making its copolymers. Trans-esterification occurs both, inter- and intra-molecularly and in this work we report that the mechanism of trans-esterification depends on the molecular weight of the polymer when it is subjected to 160 °C for time up to 24 h. For low molecular weight PCL (Mp = 10,000 g/mol) inter-molecular trans-esterification is the predominant mechanism while for the high molecular weight PCL (Mp = 80,000 g/mol) it is intra-molecular. A mid molecular weight PCL (Mp = 43,000 g/mol) showed presence of both, inter- as well as intra-molecular trans-esterification, when heated at 160 °C for 24 h. A decrease in relative crystallinity for all the samples showed reduction in crystalline component of the polymer confirming occurrence of trans-esterification at chosen conditions. An increase in tensile strength and modulus is observed after treatment at 160 °C for 24 h due to formation of more entangled network of polymer chains as a result of trans-esterification reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Woodruff MA, Hutmacher DW (2010) Prog Polym Sci 35(10):1217

    Article  CAS  Google Scholar 

  2. Labet M, Thielemans W (2009) Chem Soc Rev 38(12):3484

    Article  CAS  Google Scholar 

  3. Albertsson A-C, Srivastava RK (2008) Adv Drug Deliv Rev 60(9):1077

    Article  CAS  Google Scholar 

  4. Hakkarainen M (2002) Adv Polym Sci 157:113

    Article  CAS  Google Scholar 

  5. Hakkarainen M, Albertsson A-C (2008) Adv Polym Sci 211:85

    Article  CAS  Google Scholar 

  6. Tokiwa Y, Ando T, Suzuki T (1976) J Ferment Technol 54(8):603

    CAS  Google Scholar 

  7. Fields RD, Rodriguez F, Finn RK (1974) J Appl Polym Sci 18(12):3571

    Article  CAS  Google Scholar 

  8. Benedict CV, Cameron JA, Huang SJ (1983) J Appl Polym Sci 28(1):335

    Article  CAS  Google Scholar 

  9. Murphy CA, Cameron JA, Huang SJ, Vinopal RT (1996) Appl Environ Microbiol 62(2):456

    CAS  Google Scholar 

  10. Oda Y, Asari H, Urakami T, Tonomura K (1995) J Ferment Bioeng 80(3):265

    Article  CAS  Google Scholar 

  11. Eldsater C, Erlandsson B, Renstad R, Albertsson A-C, Karlsson S (1999) Polymer 41(4):1297

    Article  Google Scholar 

  12. Lefebvre F, David C, Vander WC (1994) Polym Degrad Stab 45(3):347

    Article  CAS  Google Scholar 

  13. Ohtaki A, Akakura N, Nakasaki K (1998) Polym Degrad Stab 62(2):279

    Article  CAS  Google Scholar 

  14. Toncheva V, Van Den BA, Schacht E, Mergaert J, Swings J (1996) J Environ Polym Degrad 4(2):71

    Article  CAS  Google Scholar 

  15. Gan Z, Liang Q, Zhang J, Jing X (1997) Polym Degrad Stab 56(2):209

    Article  CAS  Google Scholar 

  16. Iwabuchi S, Jaacks V, Kern W (1976) Makromol Chem 177(9):2675

    Article  CAS  Google Scholar 

  17. Ouhadi T, Stevens C, Teyssie P (1976) J Appl Polym Sci 20(11):2963

    Article  CAS  Google Scholar 

  18. Garozzo D, Giuffrida M, Montaudo G (1986) Macromolecules 19(6):1643

    Article  CAS  Google Scholar 

  19. Plage B, Schulten HR (1990) Macromolecules 23(10):2642

    Article  CAS  Google Scholar 

  20. Day M, Cooney JD, Shaw K, Watts J (1998) J Therm Anal Calorim 52(2):261

    Article  CAS  Google Scholar 

  21. Persenaire O, Alexandre M, Degee P, Dubois P (2001) Biomacromolecules 2(1):288

    Article  CAS  Google Scholar 

  22. Aoyagi Y, Yamashita K, Doi Y (2002) Polym Degrad Stab 76(1):53

    Article  CAS  Google Scholar 

  23. Sivalingam G, Madras G (2003) Polym Degrad Stab 80(1):11

    Article  CAS  Google Scholar 

  24. Xie W, Gan Z (2009) Polym Degrad Stab 94(7):1040

    Article  CAS  Google Scholar 

  25. Unger M, Vogel C, Siesler HW (2010) Appl Spectrosc 64(7):805

    Article  CAS  Google Scholar 

  26. Kricheldorf HR, Kreiser I (1987) J Macromol Sci Chem A24(11):1345

    Article  CAS  Google Scholar 

  27. Lipik VT, Widjaja LK, Liow SS, Abadie MJM, Venkatraman SS (2010) Polym Degrad Stab 95(12):2596

    Article  CAS  Google Scholar 

  28. Srivastava RK, Albertsson A-C (2007) Macromolecules 40(13):4464

    Article  CAS  Google Scholar 

  29. Ma D, Xiang X, Luo X, Nishi T (1997) Polymer 38(5):1131

    Article  CAS  Google Scholar 

  30. Yang IK, Hong CY, Pan PH (2003) Int Polym Process 18(3):273

    Article  CAS  Google Scholar 

  31. Chen J-L, Huang H-M, Li M-S, Chang F-C (1999) J Appl Polym Sci 71(1):75

    Article  CAS  Google Scholar 

  32. Shieh Y-T, Lin Y-T (2007) Eur Polym J 43(5):1847

    Article  CAS  Google Scholar 

  33. Pal J, Kankariya N, Sanwaria S, Nandan B, Srivastava RK (2013) Mater Sci Eng C Mater Biol Appl 33(7):4213

    Article  CAS  Google Scholar 

  34. Crescenzi V, Manzini G, Calzolari G, Borri C (1972) Eur Polym J 8(3):449

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge the financial support provided by Indian Institute of Technology Delhi and Department of Science and Technology India to perform this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv K. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, J., Sanwaria, S., Choudhary, A. et al. Thermally Initiated Trans-esterification in Poly(ε-caprolactone) and Its Dependence on Molecular Weight. J Polym Environ 22, 479–487 (2014). https://doi.org/10.1007/s10924-014-0669-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-014-0669-4

Keywords

Navigation