Skip to main content
Log in

Leveraging Multi-rate Multicast for Content Caching and Transmission Rate Allocation in Cache-Enabled Networks

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

As one of the significant features in the cache-enabled networks, in-network caching improves the efficiency of content dissemination by offloading content from the remote content provider onto the network that is closer to the users, and creates an opportunity for multicast. Since the multicast paradigm is a promising method for sending data to multiple users while saving bandwidth, this paper exploits the multi-rate multicast paradigm to address the caching problem in the cache-enabled environment which jointly considers the content caching and transmission rate allocation. The pure caching design, which is developed in most existing works, can only achieve limited performance; therefore, we argue that caching should be jointly designed. Our joint model can accommodate the diverse requirements of users by serving them with content in the nearby cache at different transmission rates, which is different from the single-rate multicast paradigm where users can only share the same rate in the same multicast group. We prove that the proposed maximization problem is a biconvex optimization problem. To solve this problem, we exploit the decomposable structure of the joint maximization to develop a heuristic solution that consists of caching decision and rate allocation algorithms. We reduce the search space of the heuristic algorithm to further reduce computation and communication complexity. We carry out an extensive packet-level simulation to evaluate the performance of our proposal compared with some benchmark schemes. Simulation results show that the proposed heuristic algorithm performs well compared with the benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. “Cisco Annual Internet Report (2018–2023) White Paper,” Cisco Annual Internet Report (2018–2023) White Paper, Mar. 09, 2020. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html. Accessed 13 Jan 2021.

  2. Xylomenos, G., Ververidis, C.N., Siris, V.A., Fotiou, N., Tsilopoulos, C., Vasilakos, X., Katsaros, K.V., Polyzos, G.C.: A survey of information-centric networking research. IEEE Commun. Surv. Tutorials 16(2), 1024–1049 (2014). https://doi.org/10.1109/SURV.2013.070813.00063

    Article  Google Scholar 

  3. Din, I.U., Hassan, S., Khan, M.K., Guizani, M., Ghazali, O., Habbal, A.: Caching in information-centric networking: strategies, challenges, and future research directions. IEEE Commun. Surv. Tutorials 20(2), 1443–1474 (2018). https://doi.org/10.1109/COMST.2017.2787609

    Article  Google Scholar 

  4. Laoutaris, N., Syntila, S., Stavrakakis, I.: Meta algorithms for hierarchical Web caches. In: IEEE International Conference on Performance, Computing, and Communications, 2004, Phoenix, AZ, USA, 2004, pp. 445–452. https://doi.org/10.1109/PCCC.2004.1395054.

  5. Laoutaris, N., Che, H., Stavrakakis, I.: The LCD interconnection of LRU caches and its analysis. Perform. Eval. 63(7), 609–634 (2006). https://doi.org/10.1016/j.peva.2005.05.003

    Article  Google Scholar 

  6. Psaras, I., Chai, W.K., Pavlou, G.: Probabilistic in-network caching for information-centric networks. In: Proceedings of the second edition of the ICN workshop on Information-centric networking—ICN ’12, Helsinki, Finland (2012), p. 55. https://doi.org/10.1145/2342488.2342501.

  7. Wang, L., Tyson, G., Kangasharju, J., Crowcroft, J.: Milking the cache cow with fairness in mind. IEEE/ACM Trans. Networking 25(5), 2686–2700 (2017). https://doi.org/10.1109/TNET.2017.2707131

    Article  Google Scholar 

  8. Chai, W.K., He, D., Psaras, I., Pavlou, G.: Cache ‘less for more’ in information-centric networks (extended version). Comput. Commun. 36(7), 758–770 (2013). https://doi.org/10.1016/j.comcom.2013.01.007

    Article  Google Scholar 

  9. Bernardini, C., Silverston, T., Festor, O.: MPC: Popularity-based caching strategy for content centric networks. In: 2013 IEEE International Conference on Communications (ICC), Budapest, Hungary, Jun. 2013, pp. 3619–3623. https://doi.org/10.1109/ICC.2013.6655114.

  10. Ong, M.D., Chen, M., Taleb, T., Wang, X., Leung, V.C.M.: FGPC: fine-grained popularity-based caching design for content centric networking. In: Proceedings of the 17th ACM international conference on Modeling, analysis and simulation of wireless and mobile systems—MSWiM ’14, Montreal, QC, Canada, 2014, pp. 295–302. https://doi.org/10.1145/2641798.2641837

  11. Carofiglio, G., Mekinda, L., Muscariello, L.: Joint forwarding and caching with latency awareness in information-centric networking. Comput. Netw. 110, 133–153 (2016). https://doi.org/10.1016/j.comnet.2016.09.019

    Article  Google Scholar 

  12. Wang, J., Ren, J., Lu, K., Wang, J., Liu, S., Westphal, C.: An optimal Cache management framework for information-centric networks with network coding. In: 2014 IFIP Networking Conference, Trondheim, Norway, Jun. 2014, pp. 1–9. https://doi.org/10.1109/IFIPNetworking.2014.6857127.

  13. Chu, W., Dehghan, M., Lui, J.C.S., Towsley, D., Zhang, Z.-L.: Joint cache resource allocation and request routing for in-network caching services. Comput. Netw. 131, 1–14 (2018). https://doi.org/10.1016/j.comnet.2017.11.009

    Article  Google Scholar 

  14. Saino, L., Psaras, I., Pavlou, G.: Hash-routing schemes for information centric networking. In: Proceedings of the 3rd ACM SIGCOMM workshop on Information-centric networking - ICN ’13, Hong Kong, China, 2013, p. 27. https://doi.org/10.1145/2491224.2491232.

  15. Liu, B., Poularakis, K., Tassiulas, L., Jiang, T.: Joint caching and routing in congestible networks of arbitrary topology. IEEE Internet Things J. 6(6), 10105–10118 (2019). https://doi.org/10.1109/JIOT.2019.2935742

    Article  Google Scholar 

  16. Qin, Y., Yang, W., Liu, W.: A probability-based caching strategy with consistent hash in named data networking. In: 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN), Shenzhen, 2018, pp. 67–72. https://doi.org/10.1109/HOTICN.2018.8606014.

  17. Yang, W., Qin, Y., Yang, Y.: An interest shaping mechanism in NDN: joint congestion control and traffic management. In: 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, 2018, pp. 1–6. https://doi.org/10.1109/ICC.2018.8422568.

  18. Garcia-Luna-Aceves, J.J., Barijough, M.M.: Efficient multicasting in Content-Centric Networks using locator-based Forwarding state. In: 2017 International Conference on Computing, Networking and Communications (ICNC), Silicon Valley, CA, USA (2017). pp. 172–177. https://doi.org/10.1109/ICCNC.2017.7876122.

  19. Wu, F., Yang, W., Ren, J., Lyu, F., Yang, P., Zhang, Y., Shen, X.: NDN-MMRA: multi-stage multicast rate adaptation in named data networking WLAN. IEEE Trans. Multimed. (2020). https://doi.org/10.1109/TMM.2020.3023282

    Article  Google Scholar 

  20. Lal, N., Kumar, S., Chaurasiya, V.K.: A network-coded caching-based multicasting scheme for information-centric networking (ICN). Iran. J. Sci. Technol. Trans. Electr. Eng. 43(3), 427–438 (2019). https://doi.org/10.1007/s40998-018-0171-4

    Article  Google Scholar 

  21. Li, B., Wang, J.: An identifier and locator decoupled multicast approach (ILDM) based on ICN. Appl. Sci. 11(2), 578 (2021). https://doi.org/10.3390/app11020578

    Article  Google Scholar 

  22. Zhou, B., Cui, Y., Tao, M.: Stochastic content-centric multicast scheduling for cache-enabled heterogeneous cellular networks. IEEE Trans. Wirel. Commun. 15(9), 6284–6297 (2016). https://doi.org/10.1109/TWC.2016.2582689

    Article  Google Scholar 

  23. Poularakis, K., Iosifidis, G., Sourlas, V., Tassiulas, L.: Exploiting caching and multicast for 5G wireless networks. IEEE Trans. Wirel. Commun. 15(4), 2995–3007 (2016). https://doi.org/10.1109/TWC.2016.2514418

    Article  Google Scholar 

  24. Liao, J., Wong, K.-K., Zhang, Y., Zheng, Z., Yang, K.: Coding, multicast, and cooperation for cache- enabled heterogeneous small cell networks. IEEE Trans. Wirel. Commun. 16(10), 6838–6853 (2017). https://doi.org/10.1109/TWC.2017.2731967

    Article  Google Scholar 

  25. Tao, M., Chen, E., Zhou, H., Yu, W.: Content-centric sparse multicast beamforming for cache-enabled cloud RAN. IEEE Trans. Wirel. Commun. 15(9), 6118–6131 (2016). https://doi.org/10.1109/TWC.2016.2578922

    Article  Google Scholar 

  26. Nguyen, H.T., Tuan, H.D., Duong, T.Q., Poor, H.V., Hwang, W.-J.: Collaborative multicast beamforming for content delivery by cache-enabled ultra dense networks. IEEE Trans. Commun. 67(5), 3396–3406 (2019). https://doi.org/10.1109/TCOMM.2019.2894797

    Article  Google Scholar 

  27. Zhou, J., Sun, Y., Li, S., Wang, B., Tian, Z.: Max–min fairness driven multicast sparse beamforming for cache-enabled Cloud RAN. Comput. Commun. 154, 246–253 (2020). https://doi.org/10.1016/j.comcom.2020.02.041

    Article  Google Scholar 

  28. Sun, Y., Cui, Y., Liu, H.: Joint pushing and caching for bandwidth utilization maximization in wireless networks. IEEE Trans. Commun. 67(1), 391–404 (2019). https://doi.org/10.1109/TCOMM.2018.2858791

    Article  Google Scholar 

  29. Lu, Y., Chen, W., Poor, H.V.: Multicast pushing with content request delay information. IEEE Trans. Commun. 66(3), 1078–1092 (2018). https://doi.org/10.1109/TCOMM.2017.2773522

    Article  Google Scholar 

  30. Chen, Q., Wang, W., Chen, W., Yu, F.R., Zhang, Z.: Cache-enabled multicast content pushing with structured deep learning. IEEE J. Sel. Areas Commun. 39(7), 2135–2149 (2021). https://doi.org/10.1109/JSAC.2021.3078493

    Article  Google Scholar 

  31. Kar, K., Sarkar, S., Tassiulas, L.: Optimization based rate control for multirate multicast sessions. In: Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213), Anchorage, AK, USA, 2001, vol. 1, pp. 123–132. https://doi.org/10.1109/INFCOM.2001.916694.

  32. Li, Bo., Liu, J.: Multirate video multicast over the Internet: an overview. IEEE Network 17(1), 24–29 (2003). https://doi.org/10.1109/MNET.2003.1174174

    Article  Google Scholar 

  33. Xiong, N., Jia, X., Yang, L.T., Vasilakos, A.V., Li, Y., Pan, Y.: A distributed efficient flow control scheme for multirate multicast networks. IEEE Trans. Parallel Distrib. Syst. 21(9), 1254–1266 (2010). https://doi.org/10.1109/TPDS.2010.29

    Article  Google Scholar 

  34. Jacobson, V., Smetters, D.K., Thornton, J. D., Plass, M.F., Briggs, N.H., Braynard, R.L.: Networking named content. In: Proceedings of the 5th International Conference on Emerging Networking Experiments and Technologies, New York, NY, USA, 2009, pp. 1–12. https://doi.org/10.1145/1658939.1658941.

  35. Yang, Y., Song, T., Zhang, B.: OpenCache: a lightweight regional cache collaboration approach in hierarchical-named ICN. Comput. Commun. 144, 89–99 (2019). https://doi.org/10.1016/j.comcom.2019.05.013

    Article  Google Scholar 

  36. Li, Z., Simon, G.: Cooperative caching in a content centric network for video stream delivery. J. Network Syst. Manag. 23(3), 445–473 (2015). https://doi.org/10.1007/s10922-014-9300-1

    Article  Google Scholar 

  37. Li, J., Wu, H., Liu, B., Fang, Z., Zhang, S., Shi, J.: RBC-CC: RBC-based cascade caching scheme for content-centric networking. J. Netw. Syst. Manag. 25(2), 375–396 (2017). https://doi.org/10.1007/s10922-016-9394-8

    Article  Google Scholar 

  38. Yang,Y., Song, T.: Energy-Efficient Cooperative Caching for Information-Centric Wireless Sensor Networking. In: IEEE Internet Things J., pp. 1–1 (2021). https://doi.org/10.1109/JIOT.2021.3088847.

  39. Chu, W., Yu, Z., Lui, J.C.S., Lin, Y.: Jointly optimizing throughput and content delivery cost over lossy cache networks. IEEE Trans. Commun. 69(6), 3846–3863 (2021). https://doi.org/10.1109/TCOMM.2021.3061685

    Article  Google Scholar 

  40. Mo, J., Walrand, J.: Fair end-to-end window-based congestion control. IEEE/ACM Trans. Networking 8(5), 556–567 (2000)

    Article  Google Scholar 

  41. Gu, L., Zeng, D., Tao, S., Guo, S., Jin, H., Zomaya, A.Y., Zhuang, W.: Fairness-aware dynamic rate control and flow scheduling for network utility maximization in network service chain. IEEE J. Sel. Areas Commun. 37(5), 1059–1071 (2019). https://doi.org/10.1109/JSAC.2019.2906746

    Article  Google Scholar 

  42. Gorski, J., Pfeuffer, F., Klamroth, K.: Biconvex sets and optimization with biconvex functions: a survey and extensions. Math. Meth. Oper. Res. 66(3), 373–407 (2007). https://doi.org/10.1007/s00186-007-0161-1

    Article  MathSciNet  MATH  Google Scholar 

  43. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  44. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and Zipf-like distributions: evidence and implications. In: IEEE INFOCOM ’99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat. No.99CH36320), New York, NY, USA, 1999, pp. 126–134, Vol. 1. https://doi.org/10.1109/INFCOM.1999.749260.

  45. Suksomboon, K., Tarnoi, S., Ji, Y., Koibuchi, M., Fukuda, K., Abe, S., Motonori, N., Aoki, M., Urushidani, S., Yamada, S.: PopCache: Cache more or less based on content popularity for information-centric networking. In: 38th Annual IEEE Conference on Local Computer Networks, Sydney, NSW, Oct. 2013, pp. 236–243. https://doi.org/10.1109/LCN.2013.6761239.

  46. Mastorakis, S., Afanasyev, A., Zhang, L.: On the evolution of ndnSIM: an open-source simulator for NDN experimentation. ACM SIGCOMM Comput. Commun. Rev. 47(3), 15 (2017)

    Article  Google Scholar 

  47. Xu, K., Liu, H., Liu, J., Zhang, J.: LBMP: a logarithm-barrier-based multipath protocol for internet traffic management. IEEE Trans. Parallel Distrib. Syst. 22(3), 476–488 (2011). https://doi.org/10.1109/TPDS.2010.95

    Article  Google Scholar 

  48. Rezazad, M., Tay, Y.C.: Decoupling NDN caches via CCndnS: design, analysis, and application. Comput. Commun. 151, 338–354 (2020). https://doi.org/10.1016/j.comcom.2019.12.053

    Article  Google Scholar 

  49. Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M.: The internet topology zoo. IEEE J. Sel. Areas Commun. 29(9), 1765–1775 (2011). https://doi.org/10.1109/JSAC.2011.111002

    Article  Google Scholar 

  50. Rossi, D., Rossini, G.: Caching performance of content centric networks under multi-path routing (and more), p. 9.

  51. Carofiglio, G., Gallo, M., Muscariello, L.: ICP: Design and evaluation of an Interest control protocol for content-centric networking. In: 2012 Proceedings IEEE INFOCOM Workshops, Mar. 2012, pp. 304–309. https://doi.org/10.1109/INFCOMW.2012.6193510.

  52. Lisong, X., Harfoush, K., Rhee, I.: Binary increase congestion control (BIC) for fast long-distance networks. In: IEEE INFOCOM 2004, Hong Kong, China, 2004, vol. 4, pp. 2514–2524. https://doi.org/10.1109/INFCOM.2004.1354672.

  53. Schneider, K., Yi, C., Zhang, B., Zhang, L.: A Practical Congestion Control Scheme for Named Data Networking. In: Proceedings of the 3rd ACM Conference on Information-Centric Networking, Kyoto Japan, Sep. 2016, pp. 21–30. doi: https://doi.org/10.1145/2984356.2984369.

Download references

Acknowledgements

This work was supported by the Science and Technology Fundament Research Fund of Shenzhen under Grants JCYJ20160318095218091, JCYJ20170307151807788.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Qin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Qin, Y., Yang, Y. et al. Leveraging Multi-rate Multicast for Content Caching and Transmission Rate Allocation in Cache-Enabled Networks. J Netw Syst Manage 30, 57 (2022). https://doi.org/10.1007/s10922-022-09665-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-022-09665-5

Keywords

Navigation