Skip to main content
Log in

An Improved Discrete Algebraic Reconstruction Technique for Limited-View Based on Gray Mean Value Guidance

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Discrete Algebraic Reconstruction Technique (DART) as a heuristic algorithm is capable of computing better results even using fewer numbers of projections than the Algebraic Reconstruction Technique (ART), especially for a single material object. Although it has reconstructed the objects that consisting of only a few different materials robustly, the efficiency for parameter estimation such as prior gray values and segmentation threshold is time-consuming. In this work, we consider a new Gray Mean Value Guided DART(MVG-DART) method through optimizing the prior parameters to address the inverse problem of reconstructing the structure of an object from limited X-ray projections. Firstly, the preliminary image reconstructed from the algebraic reconstruction algorithm, such as SIRT, is segmented. And the local gray value in the region is corrected by residual projection data. Then, the process that minimizing the projection distance is used to obtain a better threshold to segmentation by advance and retreat method. Simulation and actual reconstruction experiments show that the proposed method improves the reconstruction quality effectively and speed up the convergence rate of the DART algorithm significantly. And the acceleration ratio is well improved about 7.7 times compared with the DART algorithm, which has demonstrated the potential of our method for incomplete projection reconstruction, such as limited projections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig.14

Similar content being viewed by others

References

  1. Zhou, Z.D., Zhang, X.L., Xin, R.C., Mao, L., Jia, J.S., Wei, S.S., Sheng, T., Zheng, J.H.: Direct iterative basis image reconstruction based on MAP-EM algorithm for spectral CT. J. Nondestruct. Eval. 40, 5 (2021)

    Article  Google Scholar 

  2. Agrawal, A.K., Sarkar, P.S., Kashyap, Y.S., Singh, B., Sharma, A., Kumar, R., Sinha, A.: Application of X-ray CT for non-destructive characterization of graphite fuel-tube. J. Nondestruct. Eval. 35, 36 (2016)

    Article  Google Scholar 

  3. Wu, W., Zhang, Y., Wang, Q., Liu, F., Chen, P., Yu, H.: Low-dose spectral CT reconstruction using image gradient ℓ0 –norm and tensor dictionary. Appl. Math. Model. 63, 538–557 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zibetti, M., Lin, C., Herman, G.: Total variation superiorized conjugate gradient method for image reconstruction. Inverse Probl. 36(8), 089601 (2020)

    Article  MATH  Google Scholar 

  5. Jones, G.A., Huthwaite, P.: Limited view X-ray tomography for dimensional measurements. NDT & E Int. 93, 98–109 (2018)

    Article  Google Scholar 

  6. Xu, J.Q., Zhao, Y.S., Li, H.W., Zhang, P.: An image reconstruction model regularized by edge-preserving diffusion and smoothing for limited-angle computed tomography. Inverse Probl. 35(8), 085004 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Z., Jin, X., Li, L., Wang, G.: A limited-angle CT reconstruction method based on anisotropic TV minimization. Phys. Med. Biol. 58, 2119–2141 (2013)

    Article  Google Scholar 

  8. Frikel, J., Quinto, E.T.: Characterization and reduction of artifacts in limited angle tomography. Inverse Probl. 29(12), 125007 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bao, P., Sun, H., Wang, Z., Zhang, Y., Xia, W.: Convolutional sparse coding for compressed sensing CT reconstruction. IEEE Trans. Med. Imaging 38(11), 2607–2619 (2019)

    Article  Google Scholar 

  10. Klibanov, M.V., Nguyen, L.H.: PDE-based numerical method for a limited angle X-ray tomography. Inverse Probl. 35(4), 045009 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Luo, X.Q., Yu, W., Wang, C.X.: An image reconstruction method based on total variation and wavelet tight frame for limited-angle CT. IEEE Access 6, 1461–1470 (2018)

    Article  Google Scholar 

  12. Wang, L., Zhang, H., Cai, A., Yan, B., Li, L., Hu, G.: Image reconstruction algorithm based on inexact alternating direction total-variation minimization. Acta Phys. Sin. 62(19), 198701 (2013)

    Article  Google Scholar 

  13. Zhang, Y., Zhang, W., Lei, Y., Zhou, J.: Few-view image reconstruction with fractional-order total variation. J. Opt. Soc. Am. A: Opt. Image Sci., Vis. 31(5), 981–995 (2014)

    Article  Google Scholar 

  14. Yang, F.Q., Zhang, D.H., Huang, K.D., Gao, Z.Z., Yang, Y.F.: Incomplete projection reconstruction of computed tomography based on modified discrete algebraic reconstruction technique. Meas. Sci. Technol. 29(2), 25405 (2018)

    Article  Google Scholar 

  15. Batenburg, K.J., Sijbers, J.: DART: A practical reconstruction algorithm for discrete tomography. IEEE Trans. Image Process 20(9), 2542–2553 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sanders, T.: Discrete iterative partial segmentation technique (DIPS) for tomographic reconstruction. IEEE Trans. Comput. Imaging. 2(1), 71–82 (2016)

    Article  MathSciNet  Google Scholar 

  17. Brabant, L., Dierick, M., Pauwels, E., Boone, M.N., Van Hoorebeke, L.: EDART, a discrete algebraic reconstructing technique for experimental data obtained with high resolution computed tomography. J. Xray Sci. Technol. 22(1), 47–61 (2014)

    Google Scholar 

  18. Gong, C.C., Zeng, L.: Adaptive iterative reconstruction based on relative total variation for low-intensity computed tomography. Signal Process 165, 149–162 (2019)

    Article  Google Scholar 

  19. Maestre-Deusto, F.J., Scavello, G., Pizarro, J.: ADART: an adaptive algebraic reconstruction algorithm for discrete tomography. IEEE Trans. Image Process 20(8), 2146–2152 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bleichrodt, F., Tabak, F., Batenburg, K.J.: SDART: an algorithm for discrete tomography from noisy projections. Comput. Vis. Image Underst. 129(8), 63–74 (2014)

    Article  Google Scholar 

  21. Gorissen, D., Crombecq, K., Couckuyt, I., Dhaene, T., Demeester, P.: A surrogate modeling and adaptive sampling toolbox for computerbased design. J. Mach. Learn. Res. 11, 2051–2055 (2010)

    Google Scholar 

  22. Kwon J., Song S. M.: Image reconstruction using projections from a few views by discrete steering combined with DART. Conference on Computational Imaging X, Proceedings of SPIE. 8296, (2012).

  23. Zhuge, X.D., Palenstijn, W.J., Batenburg, K.J.: TVR-DART: a more robust algorithm for discrete tomography from limited projection data with automated gray value estimation. IEEE Trans. Image Process 25(1), 455–468 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ringh, A., Zhuge, X.D., Palenstijn, W.J., Batenburg, K.J., Oktem, O.: High-level algorithm prototyping: an example extending the TVR-DART algorithm. Lect. Notes Comput. Sci. 10502, 109–121 (2017)

    Article  MATH  Google Scholar 

  25. Nagy, A.: Experimental study on multivalued phantoms using different filters in the DART algorithm. Fund. Inform. 141(2–3), 207–231 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Haung, D.Y., Lin, T.W., Hu, W.C.: Automatic multilevel thresholding based on two-stage otsu’s method with cluster determination by valley estimation. Innov. Comput., Inf. Control. 7(10), 5631–5644 (2011)

    Google Scholar 

  27. Brabant, L., Dierick, M., Pauwels, E.: EDART, a discrete algebraic reconstructing technique for experimental data obtained with high resolution computed tomography. J. Xray Sci. Technol. 22(1), 47–61 (2014)

    Google Scholar 

  28. Liang, Z., Guan, Y., Liu, G.: A modified discrete algebraic reconstruction technique for multiple gray image reconstruction for limited angle range tomography. J. Synchrotron Radiat. 23(2), 606–616 (2016)

    Article  Google Scholar 

  29. Roelandts, T., Kees, J., Batenburg, J.: PDART: a partially discrete algorithm for the reconstruction of dense particles. Radiol. Nucl. Med. 44(37), 44080457 (2011)

    Google Scholar 

  30. Liang, G., Ren, S., Dong, F.: An EIT image segmentation method based on projection distance minimization. IEEE Int. Conf. Imaging Syst. Tech. 2018, 1–5 (2017)

    Google Scholar 

  31. Aarle, W.V., Batenburg, K.J., Sijbers, J.: Automatic parameter estimation for the discrete algebraic reconstruction technique (DART). IEEE Trans. Med. Imaging 21(11), 4608–4621 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sidky E. Y., Chartrand R., Pan X. C.: Constrained non-convex TpV minimization for extremely sparse projection view sampling in CT. 60th IEEE Nuclear Science Symposium and Medical Imaging Conference. NSS/MIC 2013, (2013).

  33. Tao, K., Huang, L., Zhong, Y.: Improved compressive sensing algorithm for CT image reconstruction with incomplete projection data. J. Xidian Univ. 42(4), 95–99 (2015)

    Google Scholar 

  34. Yang, F.Q., Zhang, D.H., Huang, K.D.: Review of reconstruction algorithms with incomplete projection data of computed tomography. Acta Phys. Sin. 63(5), 58701 (2013)

    Article  Google Scholar 

  35. Yoon, S., Makiharju, S.A., Fessler, J.A., Ceccio, S.L.: Image reconstruction for limited-angle electron beam X-ray computed tomography with energy-integrating detectors for multiphase flows. IEEE Trans. Comput. Imaging 4(1), 112–124 (2018)

    Article  MathSciNet  Google Scholar 

  36. Dabravolski, A., Batenburg, J., Sijbers, J.: A multiresolution approach to discrete tomography using DART. Plos one 9(9), e106090 (2013)

    Article  Google Scholar 

  37. Zhou, L.H., Cong, W.J., Lu, F.L., Wang, L.: Research about measurement error of bullet head traces based on improved search retreat method. Inf. Technol. J. 12, 3548–3553 (2013)

    Article  Google Scholar 

  38. Chen, Q., Zhao, L., Lu, J., Kuang, G., Wang, N., Jiang, Y.: Modified two-dimensional Otsu image segmentation algorithm and fast realization. IET Image Process 6(4), 426–433 (2012)

    Article  MathSciNet  Google Scholar 

  39. Feldkamp, L.A., Davis, L.C., Kress, J.W.: Practical cone-beam algorithm. J. Opt. Soc. Am. A 1(6), 612–619 (1984)

    Article  Google Scholar 

Download references

Funding

This work was supported in part by National Natural Science Foundation of China (52005415), National Science and Technology Major Project (J2019-VII-0013-0153, J2019-VIII-0015-0176), Science Center for Gas Turbine Project (P2022-B-IV-013-001), The Fundamental Research Funds for the Central Universities (HXGJXM202216), Technology Field Fund of Basic Strengthening Plan (2019-JCJQ-JJ-391), Science and Technology Innovation 2025 Major Project of Ningbo, China (2021Z129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqiang Yang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, K., Gao, Z., Yang, F. et al. An Improved Discrete Algebraic Reconstruction Technique for Limited-View Based on Gray Mean Value Guidance. J Nondestruct Eval 42, 6 (2023). https://doi.org/10.1007/s10921-022-00916-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-022-00916-8

Keywords

Navigation