Skip to main content
Log in

Simulation of Associated Particle Technique used for Reducing Noise in 14 MeV Neutron Radiography

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Distortions caused by scattered neutrons and induced radiation are significant factors in fast neutron radiography (FNR). A 14 MeV fast neutron radiography system with associated particle technique (APT) has been developed in our laboratory for the application in special nuclear material (SNM) quality detection. To estimate the feasibility of the system to reduce the effects of non-direct transmission neutrons, a theoretical FNR system with APT has been developed with Geant4 toolkit. The simulation results showed that a 5 ns time window was good enough to remove 56.4% non-direct transmission neutrons and effectively improve the signal to noise ratio (SNR). Non-direct transmission neutrons in the time window following a Gaussian distribution indicated that they could be removed by Point Scattered Function (PScF). The attenuation image proved that a 5 ns time window and neutron detector with position resolution of 1 mm could effectively improve the contrast of image. The preliminary results suggest that FNR with APT could be a feasible technique in SNM quality detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

The source code generated during and/or analyzed during the current study is available from the corresponding author on reasonable request.

References

  1. Bishnoi, S., Thomas, R.G., Sarkar, P.S., Datar, V.M., Sinha, A.: Simulation study of Fast Neutron Radiography using GEANT4. J. Instrum. 10, P02002–P02002 (2015). https://doi.org/10.1088/1748-0221/10/02/p02002

    Article  Google Scholar 

  2. Meshkian, M.: Monte Carlo simulation of a fast neutron counter for use in neutron radiography. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel Spectrom. Dect Assoc. Equip. 788, 73–78 (2015). https://doi.org/10.1016/j.nima.2015.03.048

    Article  Google Scholar 

  3. Börries, S., Metz, O., Pranzas, P.K., Bücherl, T., Söllradl, S., Dornheim, M., Klassen, T., Schreyer, A.: Scattering influences in quantitative fission neutron radiography for the in situ analysis of hydrogen distribution in metal hydrides. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel Spectrom. Dect Assoc. Equip. 797, 158–164 (2015). https://doi.org/10.1016/j.nima.2015.06.033

    Article  Google Scholar 

  4. Hassanein, R., Lehmann, E., Vontobel, P.: Methods of scattering corrections for quantitative neutron radiography. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel Spectrom. Dect Assoc. Equip. 542, 353–360 (2005). https://doi.org/10.1016/j.nima.2005.01.161

    Article  Google Scholar 

  5. Hussey, D.S., Coakley, K.J., Baltic, E., Jacobson, D.L.: Improving quantitative neutron radiography through image restoration. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel Spectrom. Dect Assoc. Equip. 729, 316–321 (2013). https://doi.org/10.1016/j.nima.2013.07.013

    Article  Google Scholar 

  6. Hassan, M.H.: Point Scattered Function (PScF) for fast neutron radiography. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms. 267, 2545–2549 (2009). https://doi.org/10.1016/j.nimb.2009.05.062

    Article  Google Scholar 

  7. Wang, J., Li, Y., Wang, Y., Li, T., Zhang, Z.: Design and Optimization of a Fast Neutron Radiography System Based on a High-Intensity D-T Fusion Neutron Generator. Nucl. Technol. 205, 978–986 (2019). https://doi.org/10.1080/00295450.2019.1575122

    Article  Google Scholar 

  8. Sabo-Napadensky, I., Weiss-Babai, R., Gayer, A., Vartsky, D., Bar, D., Mor, I., Chacham-Zada, R., Cohen, M., Tamim, N.: Research and development of a dedicated collimator for 14.2 MeV fast neutrons for imaging using a D-T generator. J. Instrum. 7, C06005–C06005 (2012). https://doi.org/10.1088/1748-0221/7/06/c06005

    Article  Google Scholar 

  9. Ji, Q., Ludewigt, B., Wallig, J., Waldron, W., Tinsley, J.: Development of a Time-tagged Neutron Source for SNM Detection. Phys. Procedia. 66, 105–110 (2015). https://doi.org/10.1016/j.phpro.2015.05.015

    Article  Google Scholar 

  10. Kavetskiy, A., Yakubova, G., Prior, S.A., Torbert, H.A.: Energy correlated timing spectra in target neutron techniques. Nuclear Instruments and Methods. Phys. Res. Sect. B: Beam Interact. Mater. Atoms. 433, 80–86 (2018). https://doi.org/10.1016/j.nimb.2018.07.028

    Article  Google Scholar 

  11. Han, M.-C., Jing, S.-W., Gao, Y.-D., Guo, Y.: Experiment and MCNP simulation of a portable tagged neutron inspection system for detection of explosives in a concrete wall. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel Spectrom. Dect Assoc. Equip. 929, 156–161 (2019). https://doi.org/10.1016/j.nima.2019.03.069

    Article  Google Scholar 

  12. Litvak, M.L., Barmakov, Y.N., Belichenko, S.G., Bestaev, R.R., Bogolubov, E.P., Gavrychenkov, A.V., Kozyrev, A.S., Mitrofanov, I.G., Nosov, A.V., Sanin, A.B., Shvetsov, V.N., Yurkov, D.I., Zverev, V.I.: Associated particle imaging instrumentation for future planetary surface missions. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel Spectrom. Dect Assoc. Equip. 922, 19–27 (2019). https://doi.org/10.1016/j.nima.2018.11.050

    Article  Google Scholar 

  13. Beyerle, A., Hurley, J.P., Tunnell, L.: Design of an associated particle imaging system. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel Spectrom. Dect Assoc. Equip. 299, 458–462 (1990). https://doi.org/10.1016/0168-9002(90)90825-q

    Article  Google Scholar 

  14. Hausladen, P.A., Bingham, P.R., Neal, J.S., Mullens, J.A., Mihalczo, J.T.: Portable fast-neutron radiography with the nuclear materials identification system for fissile material transfers. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms. 261, 387–390 (2007). https://doi.org/10.1016/j.nimb.2007.04.206

    Article  Google Scholar 

  15. Grogan, B.R., Mihalczo, J.T., McConchie, S.M., Mullens, J.A., Sponsor Org: (.: USDOE) Identification of Shielding Material Configurations Using NMIS Imaging. In, United States, 2011-01-01 2011. Research Org.: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). https://doi.org/Conference: 52nd Annual INMM Meeting, Palm Desert, CA, USA, 20110717, 20110721

  16. Radle, J.E., Archer, D.E., Carter, R.J., Mullens, J.A., Mihalczo, J.T., Britton, J.C.L., Lind, R.F., Wright, M.C., Sponsor Org: (.: USDOE National Nuclear Security Administration (NNSA)) Fieldable Nuclear Material Identification System. In, United States, 2010-01-01 2010. Research Org.: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). https://doi.org/Conference: 51st INMM Annual Meeting, Baltimore, MD, USA, 20100711, 20100716

  17. Wellington, T.A., Palles, B.A., Mullens, J.A., Mihalczo, J.T., Archer, D.E., Thompson, T., Britton, C.L., Ezell, N.D.B., Ericson, M.N., Farquhar, E., Lind, R., Carter, J.: Recent Fast Neutron Imaging Measurements with the Fieldable Nuclear Materials Identification System1. Phys. Procedia. 66, 432–438 (2015). https://doi.org/10.1016/j.phpro.2015.05.054

    Article  Google Scholar 

  18. Sun, S., Ouyang, X.: A simulation study of a fan-beam time-of-flight fast-neutron tomography system. Appl. Radiat. Isotopes. 149, 52–59 (2019). https://doi.org/10.1016/j.apradiso.2019.04.017

    Article  Google Scholar 

  19. Wang, J., Li, Y., Wang, Y., Li, T., Zhang, Z.: Design and Optimization of a Fast Neutron Radiography System Based on a High-Intensity D-T Fusion Neutron Generator. Nucl. Technol. 205, 1–9 (2019). https://doi.org/10.1080/00295450.2019.1575122

    Article  Google Scholar 

  20. Grogan, B.R.: The development of a parameterized scatter removeal algorithm for Nuclear Materials Identification System Imaging. United States. (2010). https://doi.org/10.2172/981787

  21. Hausladen, P., Blackston, M.A., Mullens, J.A., McConchie, S.M., Mihalczo, J.T., Bingham, P.R., Ericson, M.N., Fabris, L., Sponsor Org: (.: USDOE National Nuclear Security Administration (NNSA)) Induced-Fission Imaging of Nuclear Material. In, United States, 2010-01-01 2010. Research Org.: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). https://doi.org/Conference: INMM 51st Annual Meeting, Baltimore, MD, USA, 20100711, 20100715

  22. Blackston, M., Hausladen, P.: Fast-neutron elastic-scatter imaging for material characterization. (2015). https://doi.org/10.1109/NSSMIC.2015.7581846

  23. Laplace, T.A., Goldblum, B.L., Brown, J.A., Bleuel, D.L., Brand, C.A., Gabella, G., Jordan, T., Moore, C., Munshi, N., Sweger, Z.W., Sweet, A., Brubaker, E.: Low energy light yield of fast plastic scintillators. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers. Detectors and Associated Equipment. 954, 161444 (2020). https://doi.org/10.1016/j.nima.2018.10.122

    Article  Google Scholar 

  24. Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Chytracek, R., Cooperman, G., Cosmo, G., Degtyarenko, P., Dell’Acqua, A., Depaola, G., Dietrich, D., Enami, R., Feliciello, A., Ferguson, C., Fesefeldt, H., Folger, G., Foppiano, F., Forti, A., Garelli, S., Giani, S., Giannitrapani, R., Gibin, D., Gómez Cadenas, J.J., González, I., Gracia Abril, G., Greeniaus, G., Greiner, W., Grichine, V., Grossheim, A., Guatelli, S., Gumplinger, P., Hamatsu, R., Hashimoto, K., Hasui, H., Heikkinen, A., Howard, A., Ivanchenko, V., Johnson, A., Jones, F.W., Kallenbach, J., Kanaya, N., Kawabata, M., Kawabata, Y., Kawaguti, M., Kelner, S., Kent, P., Kimura, A., Kodama, T., Kokoulin, R., Kossov, M., Kurashige, H., Lamanna, E., Lampén, T., Lara, V., Lefebure, V., Lei, F., Liendl, M., Lockman, W., Longo, F., Magni, S., Maire, M., Medernach, E., Minamimoto, K., de Mora, P., Morita, Y., Murakami, K., Nagamatu, M., Nartallo, R., Nieminen, P., Nishimura, T., Ohtsubo, K., Okamura, M., O’Neale, S., Oohata, Y., Paech, K., Perl, J., Pfeiffer, A., Pia, M.G., Ranjard, F., Rybin, A., Sadilov, S., Di Salvo, E., Santin, G., Sasaki, T., Savvas, N., Sawada, Y., Scherer, S., Sei, S., Sirotenko, V., Smith, D., Starkov, N., Stoecker, H., Sulkimo, J., Takahata, M., Tanaka, S., Tcherniaev, E., Safai Tehrani, E., Tropeano, M., Truscott, P., Uno, H., Urban, L., Urban, P., Verderi, M., Walkden, A., Wander, W., Weber, H., Wellisch, J.P., Wenaus, T., Williams, D.C., Wright, D., Yamada, T., Yoshida, H., Zschiesche, D.: Geant4—a simulation toolkit. Nucl Instrum Methods Phys Res Sect A-Accel Spectrom Dect Assoc Equip 506:250–303. (2003). https://doi.org/10.1016/s0168-9002(03)01368-8

  25. Brun, R., Rademakers, F.: ROOT — An object oriented data analysis framework. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers. Detectors and Associated Equipment. 389, 81–86 (1997). https://doi.org/10.1016/S0168-9002(97)00048-X

    Article  Google Scholar 

  26. Jun, W.U., Liu, C.A., De, H.S., Zhang, B.A., Tian, D.F.: Numerical Simulation and Analyses on Actively Detecting Nuclear Warheads with Neutron Sources. CJCP. (2003). https://doi.org/10.1023/A:1022289509702

Download references

Funding

This work was supported by Laboratory of Neutron physics Foundation of Institute of Nuclear physics and chemistry (Grant No. 2017AE01). The authors have no relevant financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie yan.

Ethics declarations

Conflict of interest

According to policy as well as my moral obligation, no potential conflict of interest was reported by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

chen, H., Yan, J., zhu, J. et al. Simulation of Associated Particle Technique used for Reducing Noise in 14 MeV Neutron Radiography. J Nondestruct Eval 41, 77 (2022). https://doi.org/10.1007/s10921-022-00906-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-022-00906-w

Keywords

Navigation