Skip to main content
Log in

Evaluation of Ultrasonic SH-Waveform Tomography for Determining Cover Thickness and Rebar Size in Concrete Structures

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The simultaneous detection of cover depth and rebar diameter are among the most frequently encountered issues for inspecting concrete for quality control and assurance, or evaluating a concrete structure. This paper presents a novel application of 2D full-waveform inversion of ultrasonic SH-waves (2D SH-FWI), for determining cover depth and size of embedded rebar. The method was applied to ultrasonic SH-wave datasets collected by a commercial shear-wave tomography system (MIRA) on four concrete specimens. Two of them had 10 steel bars of the same size (#5) embedded at various depths, and the other two had 10 steel bars of various sizes (#3 to #14) placed at the same cover depth of 65 mm. The results showed that the presented 2D SH-FWI was able to characterize both the depths and sizes of rebars. Except for the smallest rebar # 3, the difference between the inverted and true sizes is less than 30% for 9 rebars (#4 to #14 at 65-mm cover depth), and less than 33% for all 10 rebars (#5) at various depths from 25 to 140 mm. For comparison, the rebar sizes could not be obtained with the ultrasonic synthetic aperture focusing technique and GPR method, which only detected the cover thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

source signatures associated with the initial model, c the homogenous initial model based on measured Vs and density of concrete, and d final inverted result

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. McCann, D.M., Forde, M.C.: Review of NDT methods in the assessment of concrete and masonry structures. NDT E Int. 34(2), 71–84 (2001). https://doi.org/10.1016/S0963-8695(00)00032-3

    Article  Google Scholar 

  2. Dinh, K., Gucunski, N., Duong, T.H.: An algorithm for automatic localization and detection of rebars from GPR data of concrete bridge decks. Autom. Constr. 89, 292–298 (2018). https://doi.org/10.1016/j.autcon.2018.02.017

    Article  Google Scholar 

  3. Algernon, D., Hiltunen, D.R., Ferraro, C.C., Ishee, C.: Rebar detection with cover meter and ultrasonic pulse echo combined with automated scanning system. Transp. Res. Rec. 2251(1), 123–131 (2011). https://doi.org/10.3141/2251-13

    Article  Google Scholar 

  4. Hoegh, K., Khazanovich, L., Yu, H.T.: Ultrasonic tomography for evaluation of concrete pavements. Transp. Res. Rec. 2232(1), 85–94 (2011). https://doi.org/10.3141/2232-09

    Article  Google Scholar 

  5. Hasan, M.I., Yazdani, N.: Ground penetrating radar utilization in exploring inadequate concrete covers in a new bridge deck. Case Stud. Constr. Mater. 1, 104–114 (2014). https://doi.org/10.1016/j.cscm.2014.04.003

    Article  Google Scholar 

  6. Wiwatrojanagul, P., Sahamitmongkol, R., Tangtermsirikul, S., Khamsemanan, N.: A new method to determine locations of rebars and estimate cover thickness of RC structures using GPR data. Constr. Build. Mater. 140, 257–273 (2017). https://doi.org/10.1016/J.CONBUILDMAT.2017.02.126

    Article  Google Scholar 

  7. Utsi, V., Utsi, E.: Measurement of reinforcement bar depths and diameters in concrete. In: Proceedings of the Tenth International Conference on Grounds Penetrating Radar, 2004. GPR 2004, pp. 659–662. IEEE (2004)

  8. Zhou, F., Chen, Z., Liu, H., Cui, J., Spencer, B.F., Fang, G.: Simultaneous estimation of rebar diameter and cover thickness by a GPR-EMI dual sensor. Sensors 18(9), 2969 (2018). https://doi.org/10.3390/s18092969

    Article  Google Scholar 

  9. Chang, C.W., Lin, C.H., Lien, H.S.: Measurement radius of reinforcing steel bar in concrete using digital image GPR. Constr. Build. Mater. 23(2), 1057–1063 (2009). https://doi.org/10.1016/j.conbuildmat.2008.05.018

    Article  Google Scholar 

  10. Zhan, R., Xie, H.: GPR measurement of the diameter of steel bars in concrete specimens based on the stationary wavelet transform. Insight-Non-Destruct. Test. Cond. Monit. 51(3), 151–155 (2009). https://doi.org/10.1784/insi.2009.51.3.151

    Article  Google Scholar 

  11. Zanzi, L., Arosio, D.: Sensitivity and accuracy in rebar diameter measurements from dual-polarized GPR data. Constr. Build. Mater. 48, 1293–1301 (2013). https://doi.org/10.1016/j.conbuildmat.2013.05.009

    Article  Google Scholar 

  12. Hasan, M.I., Yazdani, N.: An experimental and numerical study on embedded rebar diameter in concrete using ground penetrating radar. Chin. J. Eng (2016). https://doi.org/10.1155/2016/9714381

    Article  Google Scholar 

  13. Mechbal, Z., Khamlichi, A.: Determination of concrete rebars characteristics by enhanced post-processing of GPR scan raw data. NDT E Int. 89, 30–39 (2017). https://doi.org/10.1016/j.ndteint.2017.03.005

    Article  Google Scholar 

  14. Hong, S., Lai, W.W.L., Wilsch, G., Helmerich, R., Helmerich, R., Günther, T., Wiggenhauser, H.: Periodic mapping of reinforcement corrosion in intrusive chloride contaminated concrete with GPR. Constr. Build. Mater. 66, 671–684 (2014). https://doi.org/10.1016/j.conbuildmat.2014.06.019

    Article  Google Scholar 

  15. Dinh, K., Zayed, T., Moufti, S., Shami, A., Jabri, A., Abouhamad, M., Dawood, T.: Clustering-based threshold model for condition assessment of concrete bridge decks with ground-penetrating radar. Transp. Res. Rec. 2522(1), 81–89 (2015). https://doi.org/10.3141/2522-08

    Article  Google Scholar 

  16. Popovics, J.S., Roesler, J.R., Bittner, J., Amirkhanian, A.N., Brand, A.S., Gupta, P., Flowers, K.: Ultrasonic imaging for concrete infrastructure condition assessment and quality assurance. Illinois Center for Transportation (2017)

  17. Wang, X., Rister, B., Dadi, G.B.: Evaluating performance of ground penetrating radar (GPR) and pachometers for bridge deck reinforcing steel cover height verification. Construction Research Congress (2020)

  18. Virieux, J., Operto, S.: An overview of full-waveform inversion in exploration geophysics. Geophysics 74(6), WCC1–WCC26 (2009). https://doi.org/10.1190/1.3238367

    Article  Google Scholar 

  19. Pratt, R.G.: Seismic waveform inversion in the frequency domain; Part 1, Theory and verification in a physical scale model. Geophysics 64(3), 888–901 (1999). https://doi.org/10.1190/1.1444597

    Article  Google Scholar 

  20. Shipp, R.M., Singh, S.C.: Two-dimensional full wavefield inversion of wide-aperture marine seismic streamer data. Geophys. J. Int. 151(2), 325–344 (2002). https://doi.org/10.1046/j.1365-246X.2002.01645.x

    Article  Google Scholar 

  21. Ravaut, C., Operto, S., Improta, L., Virieux, J., Herrero, A., Dell’Aversana, P.: Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-waveform tomography: application to a thrust belt. Geophys. J. Int. 159(3), 1032–1056 (2004). https://doi.org/10.1111/j.1365-246X.2004.02442.x

    Article  Google Scholar 

  22. Sheen, D.H., Tuncay, K., Baag, C.E., Ortoleva, P.J.: Time domain Gauss—Newton seismic waveform inversion in elastic media. Geophys. J. Int. 167(3), 1373–1384 (2006). https://doi.org/10.1111/j.1365-246X.2006.03162.x

    Article  Google Scholar 

  23. Sears, T.J., Singh, S.C., Barton, P.J.: Elastic full waveform inversion of multi-component OBC seismic data. Geophys. Prospect. 56(6), 843–862 (2008). https://doi.org/10.1111/j.1365-2478.2008.00692.x

    Article  Google Scholar 

  24. Prieux, V., Brossier, R., Operto, S., Virieux, J.: Multiparameter full waveform inversion of multicomponent ocean-bottom-cable data from the Valhall field. Part 1: imaging compressional wave speed, density and attenuation. Geophys. J. Int. 194(3), 1640–1664 (2013). https://doi.org/10.1093/gji/ggt177

    Article  Google Scholar 

  25. Métivier, L., Bretaudeau, F., Brossier, R., Operto, S., Virieux, J.: Full waveform inversion and the truncated Newton method: quantitative imaging of complex subsurface structures. Geophys. Prospect. 62(6), 1353–1375 (2014). https://doi.org/10.1111/1365-2478.12136

    Article  Google Scholar 

  26. Tran, K.T., McVay, M., Faraone, M., Horhota, D.: Sinkhole detection using 2D full seismic waveform tomographySinkhole detection by FWI. Geophysics 78(5), R175–R183 (2013). https://doi.org/10.1190/geo2013-0063.1

    Article  Google Scholar 

  27. Tran, K.T., Sperry, J.: Application of 2D full-waveform tomography on land-streamer data for assessment of roadway subsidence. Geophysics 83(3), EN1–EN11 (2018). https://doi.org/10.1190/geo2016-0550.1

    Article  Google Scholar 

  28. Epanomeritakis, I., Akçelik, V., Ghattas, O., Bielak, J.: A Newton-CG method for large-scale three-dimensional elastic full-waveform seismic inversion. Inverse Prob. 24(3), 034015 (2008). https://doi.org/10.1088/0266-5611/24/3/034015

    Article  MathSciNet  MATH  Google Scholar 

  29. Fichtner, A., Kennett, B.L., Igel, H., Bunge, H.P.: Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods. Geophys. J. Int. 179(3), 1703–1725 (2009). https://doi.org/10.1111/j.1365-246X.2009.04368.x

    Article  Google Scholar 

  30. Tape, C., Liu, Q., Maggi, A., Tromp, J.: Seismic tomography of the southern California crust based on spectral-element and adjoint methods. Geophys. J. Int. 180(1), 433–462 (2010). https://doi.org/10.1111/j.1365-246X.2009.04429.x

    Article  Google Scholar 

  31. Vigh, D., Kapoor, J., Moldoveanu, N., Li, H.: Breakthrough acquisition and technologies for subsalt imaging. Geophysics 76(5), WB41–WB51 (2011). https://doi.org/10.1190/geo2010-0399.1

    Article  Google Scholar 

  32. Warner, M., Ratcliffe, A., Nangoo, T., Morgan, J., Umpleby, A., Shah, N., Conroy, G.: Anisotropic 3D full-waveform inversion. Geophysics 78(2), R59–R80 (2013). https://doi.org/10.1190/geo2012-0338.1

    Article  Google Scholar 

  33. Ha, W., Kang, S.G., Shin, C.: 3D Laplace-domain waveform inversion using a low-frequency time-domain modeling algorithm. Geophysics 80(1), R1–R13 (2015). https://doi.org/10.1190/geo2013-0332.1

    Article  Google Scholar 

  34. Métivier, L., Brossier, R., Mérigot, Q., Oudet, E., Virieux, J.: An optimal transport approach for seismic tomography: application to 3D full waveform inversion. Inverse Prob. 32(11), 115008 (2016). https://doi.org/10.1088/0266-5611/32/11/115008

    Article  MathSciNet  MATH  Google Scholar 

  35. Trinh, P.T., Brossier, R., Métivier, L., Tavard, L., Virieux, J.: Efficient time-domain 3D elastic and viscoelastic full-waveform inversion using a spectral-element method on flexible Cartesian-based mesh. Geophysics 84(1), R61–R83 (2019). https://doi.org/10.1190/geo2018-0059.1

    Article  Google Scholar 

  36. Nguyen, T.D., Tran, K.T.: Site characterization with 3D elastic full-waveform tomography Geotechnical site characterization with 3D FWI. Geophysics 83(5), R389–R400 (2018). https://doi.org/10.1190/geo2017-0571.1

    Article  Google Scholar 

  37. Mirzanejad, M., Tran, K.T.: 3D viscoelastic full waveform inversion of seismic waves for geotechnical site investigation. Soil Dyn. Earthq. Eng. 122, 67–78 (2019). https://doi.org/10.1016/j.soildyn.2019.04.005

    Article  Google Scholar 

  38. Tran, K.T., Mirzanejad, M., McVay, M., Horhota, D.: 3-D time-domain Gauss-Newton full waveform inversion for near-surface site characterization. Geophys. J. Int. 217(1), 206–218 (2019). https://doi.org/10.1093/gji/ggz020

    Article  Google Scholar 

  39. Tran, K.T., Nguyen, T.D., Hiltunen, D.R., Stokoe, K., Menq, F.: 3D full-waveform inversion in time-frequency domain: field data application. J. Appl. Geophys. (2020). https://doi.org/10.1016/j.jappgeo.2020.104078

    Article  Google Scholar 

  40. Mirzanejad, M., Tran, K.T., McVay, M., Horhota, D., Wasman, S.J.: Coupling of SPT and 3D full waveform inversion for deep site characterization. Soil Dyn. Earthq. Eng. 136, 106196 (2020). https://doi.org/10.1016/j.soildyn.2020.106196

    Article  Google Scholar 

  41. Mirzanejad, M., Tran, K.T., McVay, M., Horhota, D., Wasman, S.J.: Sinkhole detection with 3D full seismic waveform tomography. Geophysics 85(5), B169–B179 (2020). https://doi.org/10.1190/geo2019-0490.1

    Article  Google Scholar 

  42. Rao, J., Ratassepp, M., Fan, Z.: Limited-view ultrasonic guided wave tomography using an adaptive regularization method. J. Appl. Phys. 120(19), 194902 (2016). https://doi.org/10.1063/1.4967790

    Article  Google Scholar 

  43. Rao, J., Ratassepp, M., Fan, Z.: Investigation of the reconstruction accuracy of guided wave tomography using full waveform inversion. J. Sound Vib. 400, 317–328 (2017). https://doi.org/10.1016/j.jsv.2017.04.017

    Article  Google Scholar 

  44. Nguyen, L.T., Modrak, R.T.: Ultrasonic wavefield inversion and migration in complex heterogeneous structures: 2D numerical imaging and nondestructive testing experiments. Ultrasonics 82, 357–370 (2018). https://doi.org/10.1016/j.ultras.2017.09.011

    Article  Google Scholar 

  45. Jalinoos, F., Tran, K.T., Nguyen, T.D., Agrawal, A.K.: Evaluation of bridge abutments and bounded wall type structures with ultraseismic waveform tomography. J. Bridg. Eng. 22(12), 04017104 (2017). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001150

    Article  Google Scholar 

  46. Tran, K.T., Jalinoos, F., Nguyen, T.D., Agrawal, A.K.: Evaluation of bridge abutment with ultraseismic waveform tomography: field data application. J. Nondestr. Eval. 38(4), 95 (2019). https://doi.org/10.1007/s10921-019-0631-4

    Article  Google Scholar 

  47. Nguyen, T.D., Tran, K.T., Gucunski, N.: Detection of bridge-deck delamination using full ultrasonic waveform tomography. J. Infrastruct. Syst. 23(2), 04016027 (2017). https://doi.org/10.1061/(ASCE)IS.1943-555X.0000323

    Article  Google Scholar 

  48. Chen, R., Tran, K.T., Wang, Y.: Time-domain full waveform inversion of SH-and Love-waves for geotechnical site characterization. Near Surf. Geophys. (2021). https://doi.org/10.1002/nsg.12137

    Article  Google Scholar 

  49. Schickert, M., Krause, M., Müller, W.: Ultrasonic imaging of concrete elements using reconstruction by synthetic aperture focusing technique. J. Mater. Civ. Eng. 15(3), 235–246 (2003). https://doi.org/10.1061/(ASCE)0899-1561(2003)15:3(235)

    Article  Google Scholar 

  50. Virieux, J.: SH-wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 49(11), 1933–1942 (1984). https://doi.org/10.1190/1.1441605

    Article  Google Scholar 

  51. Levander, A.R.: Fourth-order finite-difference P-SV seismograms. Geophysics 53(11), 1425–1436 (1988). https://doi.org/10.1190/1.1442422

    Article  Google Scholar 

  52. Komatitsch, D., Martin, R.: An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics 72(5), SM155–SM167 (2007). https://doi.org/10.1190/1.2757586

    Article  Google Scholar 

  53. Plessix, R.E.: A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophys. J. Int. 167(2), 495–503 (2006). https://doi.org/10.1111/j.1365-246X.2006.02978.x

    Article  Google Scholar 

  54. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems, pp. 1–30. Springer, New York (1977)

    MATH  Google Scholar 

  55. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  56. Zhang, Z., Huang, L., Lin, Y.: Double‐difference elastic‐waveform inversion with weighted gradients for monitoring EGS reservoirs. In: Thirty-Seventh Workshop on Geothermal Reservoir Engineering. Stanford University, California (2012)

  57. Busch, S., van der Kruk, J., Bikowski, J., Vereecken, H.: Quantitative conductivity and permittivity estimation using full-waveform inversion of on-ground GPR data. Geophysics 77(6), H79–H91 (2012). https://doi.org/10.1190/geo2012-0045.1

    Article  Google Scholar 

  58. Ernst, J.R., Green, A.G., Maurer, H., Holliger, K.: Application of a new 2D time-domain full-waveform inversion scheme to crosshole radar data. Geophysics 72(5), J53–J64 (2007). https://doi.org/10.1190/1.2761848

    Article  Google Scholar 

  59. Schäfer, M., Groos, L., Forbriger, T., Bohlen, T.: On the effects of geometrical spreading corrections for a 2D full waveform inversion of recorded shallow seismic surface waves. In: 74th EAGE Conference and Exhibition incorporating EUROPEC 2012. European Association of Geoscientists & Engineers, pp. cp-293–00298. https://doi.org/10.3997/2214-4609.20148327 (2012)

  60. Dinh, K., Gucunski, N., Tran, K.T., Novo, A., Nguyen, T.: Full-resolution 3D imaging for concrete structures with dual-polarization GPR. Autom. Constr. 125, 103652 (2021). https://doi.org/10.1016/j.autcon.2021.103652

    Article  Google Scholar 

  61. Dinh, K., Gucunski, N., Zayed, T.: Automated visualization of concrete bridge deck condition from GPR data. NDT E Int. 102, 120–128 (2019). https://doi.org/10.1016/j.ndteint.2018.11.015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khiem T. Tran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Tran, K.T., Dinh, K. et al. Evaluation of Ultrasonic SH-Waveform Tomography for Determining Cover Thickness and Rebar Size in Concrete Structures. J Nondestruct Eval 41, 35 (2022). https://doi.org/10.1007/s10921-022-00866-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-022-00866-1

Keywords

Navigation