Skip to main content
Log in

A Review of the Metal Magnetic Memory Method

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Metal magnetic memory (MMM) method is a non-destructive testing (NDT) technology which has potentials to detect early damage. A review is presented in this paper about the development of this method, including the theoretical studies of the magnetic/stress coupling effect, factors influencing the detection signals, the criteria for judging the damage state and defect identification. Directions of future research are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dubov, A.: Diagnostics of boiler tubes with usage of metal magnetic memory. Energoatomizdat, Moscow (1995)

    Google Scholar 

  2. Dubov, A.: Screening of weld quality using the metal magnetic memory effect. Weld World 41(3), 196–199 (1998)

    Google Scholar 

  3. Dubov A (1999) Diagnostics of metal items and equipment by means of metal magnetic memory. Proceeding of the 7th Conference on NDT and International Research Symposium. Shantou, China, pp 181–187

  4. Dubov, A., Kolokolnikov, S.: Application of the metal magnetic memory method for detection of defects at the initial stage of their development for prevention of failures of power engineering welded steel structures and steam turbine parts. Weld World 58, 225–236 (2014)

    Article  Google Scholar 

  5. Lovejoy, D.: Magnetic particle inspection. Char. Eval. Mater. 18(2), 385–390 (1990)

    Google Scholar 

  6. Kapustin, V., Maksimova, T., Staseev, V., et al.: Main trends of standardization of the radiographic testing method. Russ. J. Nondestr. Test. 37(12), 900–906 (2001)

    Article  Google Scholar 

  7. Gilstad, C., Dersch, M., Denale, R.: Multi-Frequency Eddy Current Testing of Ferromagnetic Welds, pp. 1363–1370. Springer, New York (1990)

    Google Scholar 

  8. Sagar, S., Kumar, B., Dobmann, G., et al.: Magnetic characterization of cold rolled and aged AISI 304 stainless steel. NDT E Int. 38, 674–681 (2005)

    Article  Google Scholar 

  9. Bozorth, R., Williams, H.: Effect of small stresses on magnetic properties. Rev. Mod. Phys. 17(1), 72–80 (1945)

    Article  Google Scholar 

  10. Cullity, B., Graham, C.: Introduction to Magnetic Materials. Addison-Wesley, New Jersey (1972)

    Google Scholar 

  11. Jiles, D.: Theory of the magnetomechanical effect. J. Phys. D Appl. Phys. 28(8), 1537–1546 (1999)

    Article  Google Scholar 

  12. Jr, W.: Irreversible magnetic effects of stress. Phys. Rev. 75(1), 147–154 (1949)

    Article  Google Scholar 

  13. Brugel, L., Rimet, G.: Interpretation of the irreversible effects of strain included together with a model of hysteresis. J. Phys. 27, 589–598 (1966)

    Article  Google Scholar 

  14. Lliboutry, L. The magnetization of iron in a weak magnetic field: effects of time, stress, and of transverse magnetic fields. Ann. Phys. 12:47 (1951)

  15. Craik, D., Wood, M.: Magnetization changes induced by stress in a constant applied field. J. Phys. D Appl. Phys. 3(3), 1009–1016 (1970)

    Article  Google Scholar 

  16. Birss R. Magnetomechanical effects in the Rayleigh region. IEEE Trans. Mag. 7:113–133 (1971)

  17. Jiles, D., Atherton, D.: Theory of the magnetisation process in ferromagnets and its application to the magnetomechanical effect. J. Phys. D Appl. Phys. 17(6), 1265–1281 (1984)

    Article  Google Scholar 

  18. Jiles, D., Atherton, D.: Theory of ferromagnetic hysteresis. J. Magn. Magn. Mater. 61(1–2), 48–60 (1986)

    Article  Google Scholar 

  19. Pitman, K.: The influence of stress on ferromagnetic hysteresis. IEEE Trans. Magn. 26(5), 1978–1980 (1990)

    Article  Google Scholar 

  20. Maylin, M., Squire, P.: Departures from the law of approach to the principal anhysteretic in a ferromagnet. J. Appl. Phys. 73(6), 2948–2955 (1993)

    Article  Google Scholar 

  21. Squire, P.: Magnetomechanical measurements and their application to soft magnetic materials. J. Magn. Magn. Mater. 160(4), 11–16 (1996)

    Article  Google Scholar 

  22. Ramesh, A., Jiles, D., Roderick, J.: A model of anisotropic anhysteretic magnetization. IEEE Trans. Magn. 32(5), 4234–4236 (1996)

    Article  Google Scholar 

  23. Ramesh, A., Jiles, D., Bi, Y.: Generalization of hysteresis modeling to anisotropic materials. J. Appl. Phys. 81(81), 5585–5587 (1997)

    Article  Google Scholar 

  24. Shi, Y., Jiles, D., Ramesh, A.: Generalization of hysteresis modeling to anisotropic and textured materials 1. J. Magn. Magn. Mater. 187(1), 75–78 (1998)

    Article  Google Scholar 

  25. Li, L., Jiles, D. Modified law of approach for the magnetomechanical model: application of the Rayleigh law to the stress domain. Proceedings of the IEEE International Magnetics Conference, Boston, 39(5): AD-11 (2003)

  26. Li, L., Jiles, D.: Modeling of the magnetomechanical effect: application of the rayleigh law to the stress domain. J. Appl. Phys. 93(10), 8480–8482 (2003)

    Article  Google Scholar 

  27. Jiles, D., Li, L.: A new approach to modeling the magnetomechanical effect. J. Appl. Phys. 95(11), 7058–7060 (2004)

    Article  Google Scholar 

  28. Sablik, M.: Modeling the effect of grain size and dislocation density on hysteretic magnetic properties in steels. J. Appl. Phys. 89(10), 5610–5613 (2001)

    Article  Google Scholar 

  29. Sablik, M., Stegemann, D., Krys, A.: Modeling grain size and dislocation density effects on harmonics of the magnetic induction. J. Appl. Phys. 89(11), 7254–7256 (2001)

    Article  Google Scholar 

  30. Sablik, M., Landgraf, F.: Modeling microstructural effects on hysteresis loops with the same maximum flux density. IEEE Trans. Magn. 39(5), 2528–2530 (2003)

    Article  Google Scholar 

  31. Sablik, M., Yonamine, T., Landgraf, F.: Modeling plastic deformation effects in steel on hysteresis loops with the same maximum flux density. IEEE Trans. Magn. 40(5), 3219–3226 (2004)

    Article  Google Scholar 

  32. Sablik, M., Rios, S., Landgraf, F., et al.: Modeling of sharp change in magnetic hysteresis behavior of electrical steel at small plastic deformation. J. Appl. Phys. 97(10), 10E518 (2005)

    Article  Google Scholar 

  33. Schneider, C.: Anisotropic cooperative theory of coaxial ferromagnetoelasticity. Physica B 343(1–4), 65–74 (2004)

    Article  Google Scholar 

  34. Schneider, C.: Effect of stress on the shape of ferromagnetic hysteresis loops. J. Appl. Phys. 97(10), 10E503 (2005)

    Article  Google Scholar 

  35. Schneider, C., Winchell, S.: Hysteresis in conducting ferromagnets. Phys. B Phys. Condens. Matter. 372(1), 269–272 (2006)

    Article  Google Scholar 

  36. Smith, R., Dapino, M.: A homogenized energy framework for ferromagnetic hysteresis. IEEE Trans. Magn. 42(7), 1747–1769 (2006)

    Article  Google Scholar 

  37. Smith, R., Dapino, M.: A homogenized energy model for the direct magnetomechanical effect. IEEE Trans. Magn. 42(8), 1944–1957 (2005)

    Article  Google Scholar 

  38. Ball, B., Smith, R., Kim, S., et al.: A stress-dependent hysteresis model for ferroelectric materials. J. Intell. Mater. Syst. Struct. 18(1), 69–88 (2007)

    Article  Google Scholar 

  39. Li, J., Xu, M.: Modified Jiles-Atherton-Sablik model for asymmetry in magnetomechanical effect under tensile and compressive stress. J. Appl. Phys. 110(6), 063918 (2011)

    Article  Google Scholar 

  40. Li, J. Studies on the magnetomechanical theory and experiment of ferromagnetic materials under weak magnetic field. Harbin Institute of Technology, Harbin (2012)

  41. Li, J., Xu, M., Leng, J., et al.: Modeling plastic deformation effect on magnetization in ferromagnetic materials. J. Appl. Phys. 111(6), 063909 (2012)

    Article  Google Scholar 

  42. Wang, Z., Deng, B., Yao, K.: Physical model of plastic deformation on magnetization in ferromagnetic materials. J. Appl. Phys. 109(8), 083928 (2011)

    Article  Google Scholar 

  43. Shi, P., Jin, K., Zheng, X.: A general nonlinear magnetomechanical model for ferromagnetic materials under a constant weak magnetic field. J. Appl. Phys. 119(14), 145103 (2016)

    Article  Google Scholar 

  44. Liu, Q., Luo, X., Zhu, H., et al.: Modeling plastic deformation effect on the hysteresis loops of ferromagnetic materials based on modified Jiles-Atherton model. Acta Phys. Sin. 66(10), 286–295 (2017)

    Google Scholar 

  45. Liu, Q., Luo, X., Zhu, H., et al.: Modified magnetomechancial model in the constant and low intensity magnetic field based on J-A theory. Chin. Phys. B 26(7), 379–385 (2017)

    Google Scholar 

  46. Zhang P, Liu L, Chen W. Analysis of characteristics and key influencing factors in magnetomechanical behavior for cable stress monitoring . Acta Phys. Sin. 62(17), 177501 (2013)

  47. Dong, L., Xu, B., Dong, S., et al.: Metal magnetic memory signals from surface of low-carbon steel and low-carbon alloyed steel. J. Central South Univ. Technol. 14(1), 24–27 (2007)

    Article  MathSciNet  Google Scholar 

  48. Guo, P., Chen, X., Guan, W., et al.: Effect of tensile stress on the variation of magnetic field of low-alloy steel. J. Magn. Magn. Mater. 323(20), 2474–2477 (2011)

    Article  Google Scholar 

  49. Bao, S., Lin, L., Zhang, D., et al. Characterization of stress-induced residual magnetic field in ferromagnetic steels. Proceedings of the 34th International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers, V004T03A029-V004T03A029 (2015)

  50. Dong, L., Xu, B., Dong, S., et al.: Metal magnetic memory testing for early damage assessment inferromagnetic materials. J. Central South Univ. Technol. 12(2), 102–106 (2005)

    Article  Google Scholar 

  51. Li, X., Lv, K., Li, G., et al. Magnetic memory effect of Q235 steel under static tension condition. Phys. Examin. Test. 31(5), 10–13 (2013)

    Google Scholar 

  52. Zhong, L., Li, L., Chen, X.: Simulation of magnetic field abnormalities caused by stress concentrations. IEEE Trans. Magn. 49(3), 1128–1134 (2013)

    Article  Google Scholar 

  53. Huang, S., Li, L., Shi, K., et al.: Magnetic field properties caused by stress concentration. J. Central South Univ. Technol. 11(1), 23–26 (2004)

    Article  Google Scholar 

  54. Chen, X., Ren, J., Wang, W., et al.: Experimental research on the microcosmic mechanism of magnetic memory testing. J. Nanchang Inst. Aeronaut. Technol. 20(3), 45–49 (2006)

    Google Scholar 

  55. Song, K., Ren, J., Ren, S., et al.: Study on the mechanism of magnetic memory effect based on polymerization model of magnetic domain. Nondestruct. Test. 29(6), 312–361 (2009)

    Google Scholar 

  56. Song, K., Tang, J., Zhong, W., et al.: Finite element analysis and magnetic memory testing of ferromagnetism items. J. Mater. Eng. 4, 40–42 (2004)

    Google Scholar 

  57. Zhang, Y., Song, K., Ren, J.: Application of ANSYS software in metal magnetic memory testing. J. Nanchang Inst. Aeronaut. Technol. 18(1), 64–69 (2004)

    Google Scholar 

  58. Zhao, W., Yu, L., Zou, W.: Measuring the plane residual stresses by equivalent stress magnetic field. J. Huazhong Univ. Sci. Technol. 27(12), 100–101 (1999)

    Google Scholar 

  59. Zhao, W., Yu, L., Zou, W.: Equivalent stress magnetic field and measurement of residual stress. J. Huazhong Univ. Sci. Technol. 27(12), 98–99 (1999)

    Google Scholar 

  60. Zhong, W.: Theoretical fundamentals of the metal magnetic memory diagnostics: spontaneous magnetization of ferromagnetic materials by elastic-plastic strain. Nondestruct. Test. 23(10), 424–426 (2001)

    Google Scholar 

  61. Ren, S., Li, X., Ren, J., et al. Studies on physical mechanism of metal magnetic memory testing technique. J. Nanchang Hangkong Univ. (Natural Sciences), 22(2), 11–17 (2008)

  62. Ren, S., Zhou, L., Fu, R.: Magnetizing reversion effect of ferromagnetic specimens in process of stress-magnetizing. J. Iron Steel Res. 22(12), 48–52 (2010)

    Google Scholar 

  63. Wang, S., Wang, W., Su, S., et al.: A magneto-mechanical model on differential permeability and stress of ferromagnetic material. J. Xian Univ. Sci. Technol. 25(3), 288–291 (2005)

    Google Scholar 

  64. Wang, Z., Yao, K., Deng, B., et al.: Theoretical studies of metal magnetic memory technique on magnetic flux leakage signals. NDT E Int. 43(4), 354–359 (2010)

    Article  Google Scholar 

  65. Wang, Z., Yao, K., Deng, B., et al.: Quantitative study of metal magnetic memory signal versus local stress concentration. NDT E Int. 43(6), 513–518 (2010)

    Article  Google Scholar 

  66. Xu, M., Li, J., Leng, J., et al.: Physical mechanism model of the metal magnetic memory testing technology. J. Harbin Inst. Technol. 42(1), 16–19 (2010)

    Google Scholar 

  67. Wan, Q., Li, S., Tang, Z.: A stress-magnetization coupled model for magnetic memory phenomenon of ferromagnetism materials. Nondestruct. Test. 33(4), 12–16 (2011)

    Google Scholar 

  68. Huang, H., Jiang, S., Yang, C., et al.: Stress concentration impact on the magnetic memory signal offerromagnetic structural steel. Nondestruct. Test. Eval. 29(4), 377–390 (2014)

    Article  Google Scholar 

  69. Shi, P.: Analytical solutions of magnetic dipole model for defect leakage magnetic fields. Nondestruct. Test. 37(3), 1–7 (2015)

    Google Scholar 

  70. Shi, P., Zheng, X.: Magnetic charge model for 3D MMM signals. Nondestruct. Test. Eval. 31(1), 45–60 (2016)

    Article  Google Scholar 

  71. Xu, K., Qiu, X., Tian, X.: Theoretical investigation of metal magnetic memory testing technique for detection of magnetic flux leakage signals from buried defect. Nondestruct. Test. Eval. 33(1), 45–55 (2017)

    Article  Google Scholar 

  72. Zhou, J., Lei, Y.: The theoretical discussion on magnetic memory phenomenon about positive magnetostriction ferromagnetism materials. J. Zhengzhou Univ. (Eng. Sci.) 24(3), 101–105 (2003)

    Google Scholar 

  73. Yuan, J., Zhang, W.: Stress-induced magnetic field on ferromagnetic plate with prefabricated crack. Manuf. Autom. 29, 187–190 (2007)

    Google Scholar 

  74. Yang, E., Li, L., Chen, X.: Magnetic field aberration induced by cycle stress. J. Magn. Magn. Mater. 312(1), 72–77 (2007)

    Article  Google Scholar 

  75. Dong, L., Xu, B., Dong, S., et al.: Stress dependence of the spontaneous stray field signals of ferromagnetic steel. NDT E Int. 42(4), 323–327 (2009)

    Article  Google Scholar 

  76. Wilson, J., Gui, Y., Barrans, S.: Residual magnetic field sensing for stress measurement. Sens. Actuat. A 135(2), 381–387 (2007)

    Article  Google Scholar 

  77. Leng, J., Xu, M., Xu, M., et al.: Magnetic field variation induced by cyclic bending stress. NDT E Int. 42(5), 410–414 (2009)

    Article  Google Scholar 

  78. Li, L., Wang, X., Yang, B., et al.: The basic theory and simulation research on metal magnetic memory based on stress-magnetization. J. Air Force Eng. Univ. (Natl. Sci. Edn) 13(3), 85–90 (2012)

    Google Scholar 

  79. Zhang, H., Li, L., Yang, B., et al.: Dimensional finite element simulation and experimental study of metal magnetic memory quantitative evaluation. J. Air Force Eng. Univ. (Natl. Sci. Edn.) 14(1), 57–61 (2013)

    Google Scholar 

  80. Shi, P., Jin, K., Zheng, X.: A magnetomechanical model for the magnetic memory method. Int. J. Mech. Sci. 124–125, 229–241 (2017)

    Article  Google Scholar 

  81. Huang, S., Li, L., Wang, X., et al.: Influence of geomagnetic field on the formation of stress induced magnetic abnormalities. J. Tsinghua Univ. (Sci. Technol.) 43(2), 208–210 (2003)

    Google Scholar 

  82. Zhong, L., Li, L., Chen, Y.: The influence of geomagnetic direction on the magnetic distortion caused by stress concentration. Nondestruct. Test. 31(1), 1–3 (2009)

    Google Scholar 

  83. Li, L., Wang, X., Huang, S.: The relationship between metal magnetic memory and geomagnetic feild. Nondestruct. Test. 25(8), 387–389 (2003)

    Google Scholar 

  84. Yu, F., Zhang, C., Wu, M.: The study of the effect of placement direction and lift-off on the magnetic memory testing signals. Mach. Des. Manuf. 5, 118–120 (2006)

    Google Scholar 

  85. Yu, F., Zhang, C., Wu, M.: The study of the effect of placement direction on the magnetic memory testing signals. Coal Mine Mach. 10, 149–152 (2005)

    Google Scholar 

  86. Yao, K., Deng, B., Wang, Z.: Numerical studies to signal characteristics with the metal magnetic memory-effect in plastically deformed samples. NDT E Int. 47(2), 7–17 (2012)

    Article  Google Scholar 

  87. Huang, H., Yao, J., Li, Z., et al.: Residual magnetic field variation induced by applied magnetic field and cyclic tensile stress. NDT E Int. 63(4), 38–42 (2014)

    Article  Google Scholar 

  88. Huang, H., Yang, C., Qian, Z., et al.: Magnetic memory signals variation induced by applied magnetic field and static tensile stress in ferromagnetic steel. J. Magn. Magn. Mater. 416, 213–219 (2016)

    Article  Google Scholar 

  89. Zhang, J., Zhou, K., Yao, E., et al.: A preliminary study on improved testing method based on metal magnetic memory effect. Part A: Phys. Test. 40(4), 83–186 (2004)

    Google Scholar 

  90. Zhang, J., Zhou, K., Lu, Q.: A preliminary study on the magnetic memory signal of axle structure under torsion loads. Part A: Phys. Test. 41(12), 616–619 (2005)

    Google Scholar 

  91. Qiu, Y., Zhang, W., Qiu, Z., et al.: Research on magnetic signals on surface of ferromagnetic specimen after tension fatigue under weak magnetic field. N. Technol. N. Process 5, 66–69 (2013)

    Google Scholar 

  92. Qiu, Z., Zhang, W., Yu, X., et al. Magnetic memory testing research under enhanced magnetic excitation. Manuf. Technol. Mach. Tool 10, 21–24 (2014)

  93. Zhong, L., Li, L., Chen, X.: Magnetic signals of stress concentration detected in different magnetic environment. Nondestruct. Test. Eval. 25(2), 161–168 (2010)

    Article  Google Scholar 

  94. Hu, B., Li, L., Chen, X., et al.: Study on the influencing factors of magnetic memory method. Int. J. Appl. Electromagnet Mech 33(3), 1351–1357 (2010)

    Article  Google Scholar 

  95. Shi, C., Dong, S., Xu, B., et al.: Metal magnetic memory effect caused by static tension load in a case-hardened steel. J. Magn. Magn. Mater. 322(4), 413–416 (2010)

    Article  Google Scholar 

  96. Shi, C., Dong, S., Xu, B., et al.: Stress concentration degree affects spontaneous magnetic signals of ferromagnetic steel under dynamic tension load. NDT E Int. 43(1), 8–12 (2010)

    Article  Google Scholar 

  97. Dong, L., Xu, B., Dong, S., et al.: Influence of tension and fatigue load on the low carbon steel magnetic memory signals. China Mech. Eng. 17(7), 742–745 (2006)

    Google Scholar 

  98. Yao, K., Wang, Z., Deng, B., et al.: Experimental research on metal magnetic memory method. Exp. Mech. 52(3), 305–314 (2012)

    Article  Google Scholar 

  99. Li, J., Xu, M., Leng, J., et al.: The characteristics of the magnetic memory signals under different states for Q235 defect samples. Adv. Mater. Res. 97–101, 500–503 (2010)

    Google Scholar 

  100. Li J, Xu M, Xu M, et al. Investigation of the variation in magnetic field induced by cyclic tensile-compressive stress. Insight 53(9), 487–490 (2011)

  101. Xing, H., Fan, J., Wang, R., et al.: Critical stress state evaluation for early damage with metal magnetic memory method. J. Harbin Inst. Technol. 41(5), 26–30 (2009)

    Google Scholar 

  102. Sun, L., Liu, X., Jia, D., et al. Three-dimensional stress-induced magnetic anisotropic constitutive model for ferromagnetic material in low intensity magnetic field. AIP Adv. 6, 9 (2016)

  103. Dong, L., Xu, B., Dong, S., et al.: Variation of stress-induced magnetic signals during tensile testing of ferromagnetic steels. NDT E Int. 41(3), 184–189 (2008)

    Article  Google Scholar 

  104. Zhang, Y., Gou, R., Li, J., et al.: Characteristics of metal magnetic memory signals of different steels under static tension. Front. Mech. Eng. China 5(2), 226–232 (2010)

    Article  Google Scholar 

  105. Ding, H., Zhang, H., Li, X., et al.: The theoretical model for detecting cracks by metal magnetic memory technique. Nondestruct. Tes. 24(2), 78–85 (2002)

    Google Scholar 

  106. Leng, J., Xu, M., Zhou, G., et al.: Effect of initial remanent states on the variation of magnetic memory signals. NDT E Int. 52, 23–27 (2012)

    Article  Google Scholar 

  107. Gorkunov E. Different remanence states and their resistance to external effects. Discussing the “method of magnetic memory”. Russian Journal of Nondestructive Testing, 2014, 50(11): 617-633

  108. Jian, X., Jian, X., Deng, G.: Experiment on relationship between the magnetic gradient of low-carbon steel and its stress. J. Magn. Magn. Mater. 321(21), 3600–3606 (2009)

    Article  Google Scholar 

  109. Yin, D., Xu, B., Dong, S., et al.: Change of magnetic memory signals under different testing environments. Acta Armamentarii 28(3), 319–323 (2007)

    Google Scholar 

  110. Ren, J., Wang, D., Song, K., et al.: Influence of stress state on magnetic memory signal. Acta Aeronaut. Astronaut. Sin. 28(3), 724–728 (2007)

    Google Scholar 

  111. Bao, S., Zhang, D. The effect of loading speed on the residual magnetic field of ferromagnetic steels subjected to tensile stress. Insight 57(7), 401–405 (2015)

  112. Bao, S., Gu, Y., Fu, M., et al.: Effect of loading speed on the stress-induced magnetic behavior of ferromagnetic steel. J. Magn. Magn. Mater. 423, 191–196 (2016)

    Article  Google Scholar 

  113. Huang, H., Qian, Z.: Effect of temperature and stress on residual magnetic signals in ferromagnetic structural steel. IEEE Trans. Magn. 53(1), 1–8 (2017)

    Article  Google Scholar 

  114. Dong, L., Xu, B., Dong, S., et al.: Influence of manufacturing process on metal magnetic memory signals in ferromagnetic materials. China Surf. Eng. 23(4), 82–86 (2010)

    Google Scholar 

  115. Yu, F.: Connection between magnetic memory characteristics induced by tensile stress and its testing time. J. Heilongjiang Inst. Sci. Technol. 17(2), 126–128 (2007)

    Google Scholar 

  116. Dong, L., Xu, B., Dong, S., et al.: Study on metal magnetic memory signals of low carbon steel under static tension test condition. J. Mater. Eng. 3, 40–43 (2006)

    Google Scholar 

  117. Leng, J., Xu, M., Li, J., et al.: Relationship between magnetic memory signal and stress. J. Harbin Inst. Technol. 42(2), 232–235 (2010)

    Google Scholar 

  118. Zhang, W., Yuan, J., Wang, Z., et al.: The force-magnetic relations in thread connecting process. China Mech. Eng. 20(1), 34–37 (2009)

    Google Scholar 

  119. Zhang, W., Qiu, Z., Yuan, J., et al.: Discussion on stress quantitative evaluation using metal magnetic memory method. J. Mech. Eng. 51(8), 9–13 (2015)

    Article  Google Scholar 

  120. Wang, D., Dong, S., Xu, B., et al.: Metal magnetic memory testing signals of 45 carbon steel during static tension process. J. Mater. Eng. 8, 77–80 (2008)

    Article  Google Scholar 

  121. Bao, S., Hu, S., Lin, L., et al. Experiment on the relationship between the magnetic field variation and tensile stress considering the loading history in U75V rail steel. Insight 57(12), 683–688 (2015)

  122. Bao, S., Liu, X., Zhang, D.: Variation of residual magnetic field of defective U75V steel subjected to tensile stress. Strain 51(5), 370–378 (2015)

    Article  Google Scholar 

  123. Shi, C., Dong, S., Xu, B., et al.: Experiment on magnetic memory testing of static tension 18CrNi4A steel samples. J. Acad. Armored Force Eng. 21(5), 19–22 (2007)

    Google Scholar 

  124. Chen, X., Liu, C., Tao, C., et al.: Research on metal magnetic memory signal change of a ferromagnetic material under static tension. Nondestruct. Test. 31(5), 345–348 (2009)

    Google Scholar 

  125. Roskosz, M., Gawrilenko, P.: Analysis of changes in residual magnetic field in loaded notched samples. NDT E Int. 41(7), 570–576 (2008)

    Article  Google Scholar 

  126. Roskosz, M., Bieniek, M.: Evaluation of residual stress in ferromagnetic steels based on residual magnetic field measurements. NDT E Int. 45(1), 55–62 (2012)

    Article  MATH  Google Scholar 

  127. Roskosz, M., Rusin, A., Bieniek, M.: Analysis of relationships between residual magnetic field and residual stress. Meccanica 48(1), 45–55 (2013)

    Article  MATH  Google Scholar 

  128. Roskosz, M., Bieniek, M.: Analysis of the universality of the residual stress evaluation method based on residual magnetic field measurements. NDT E Int. 54(3), 63–68 (2013)

    Article  MATH  Google Scholar 

  129. Dubov, A. Diagnostics of metal items and equipment by means of metal magnetic memory. NDT’99 and UK Corrosion’ 99, pp. 287–293 (1999)

  130. Zhang, J., Zhou, K.: Analysis of the characteristics of the metal magnetic memory signal under different stress states. J. Hefei Univ. Technol. 30(3), 381–383 (2007)

    Google Scholar 

  131. Ren, J., Wang, D., Song, K.: Experimental study on the magnetic memory effect of typical ferromagnetic items. Nonde Structive Test. 27(8), 409–411 (2005)

    Google Scholar 

  132. Dai, G., Wang, W., Li, W.: Magnetic memory testing and analysis of different structures. Nonde Structive Testing 24(6), 262–266 (2002)

    Google Scholar 

  133. Dong, L., Xu, B., Dong, S., et al.: Study on magnetic memory signals of medium carbon steel specimens with surface crack precut during loading process. Rare Met. 25(s1), 431–435 (2006)

    Article  Google Scholar 

  134. Liang, Z., Li, W., Wang, Y., et al.: Zero value character of metal magnetic memory signal. J. Tianjin Univ. 39(7), 847–850 (2006)

    Google Scholar 

  135. Zhang, J., Wang, B.: Recognition of signals for stress concentration zone in metal magnetic memory tests. Proc. CSEE 28(18), 144–148 (2008)

    Google Scholar 

  136. Ren, J., Bai, L., Fan, Z., et al.: New magnetic memory testing method of aeronautical ferromagnetic material. Acta Aeronaut. Astronaut. Sin. 30(11), 2224–2228 (2009)

    Google Scholar 

  137. Chen, H., Wang, C., Zhu, H.: Metal magnetic memory test method based on magnetic gradient tensor. Chin. J. Sci. Instrum. 37(3), 602–609 (2016)

    Google Scholar 

  138. Hu, X., Chi, Y.: Quantitative evaluation method of stress concentration in magnetic memory diagnosis technique. North China Electric. Power 6, 9–13 (2005)

    Google Scholar 

  139. Dong, L., Xu, B., Dong, S., et al.: Characterisation of stress concentration of ferromagnetic materials by metal magnetic memory testing. Nondestruct. Test. Eval. 25(2), 145–151 (2010)

    Article  Google Scholar 

  140. Bao, S., Lou, H., Fu, M., et al.: Correlation of stress concentration degree with residual magnetic field of ferromagnetic steel subjected to tensile stress. Nondestruct. Test. Eval. 32, 1–14 (2017)

    Article  Google Scholar 

  141. Bao, S., Fu, M., Lou, H., et al. Evaluation of stress concentration of a low-carbon steel based on residual magnetic field measurements. Insight, 58(12), 255 (2016)

  142. Chen, H., Wang, C., Zuo, X., et al.: Research on defect 2D inversion based on gradient tensor signals of metal magnetic memory. Acta Armamentarii 38(5), 995–1001 (2017)

    Google Scholar 

  143. Bao, S., Fu, M., Lou, H., et al.: Defect identification in ferromagnetic steel based on residual magnetic field measurements. J. Magn. Magn. Mater. 441, 590–597 (2017)

    Article  Google Scholar 

  144. Yao, K., Shen, K., Wang, Z., et al.: Three-dimensional finite element analysis of residual magnetic field for ferromagnets under early damage. J. Magn. Magn. Mater. 354(3), 112–118 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundamental Research Funds for the Central Universities (2017QNA4022), Zhejiang Provincial Natural Science Foundation of China (LZ12E08003) and Public Welfare Technology Research Projects of Zhejiang Province (2013C31013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Bao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, S., Jin, P., Zhao, Z. et al. A Review of the Metal Magnetic Memory Method. J Nondestruct Eval 39, 11 (2020). https://doi.org/10.1007/s10921-020-0652-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-020-0652-z

Keywords

Navigation