Skip to main content
Log in

Multi-Helical Path Exploitation in Sparsity-Based Guided-Wave Imaging of Defects in Pipes

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

In this paper, a defect localization scheme for cylindrical pipes is presented which relies on guided-wave scattering by defects. The proposed scheme is predicated on the use of a sparse array of ultrasonic transducers and the sparse nature of defects on the pipe surface. Two circular rings of transducers, functioning as transmitters and receivers, are used to encompass the region to be inspected. Multiple helical paths exist for waves to travel from the transmitters to the receivers, after being scattered by the defects. Model based dictionary matrices are constructed for each path, relating the signals arriving at the receivers to the locations of potential defects. The resulting linear signal model is inverted by group sparse reconstruction to localize defects present in the pipe. Experimental validations of the proposed multi-helical path exploitation approach are provided for defects on an aluminum pipe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adalarasu, S.: Pipe testing using guided waves. In: Proceedings of the National Seminar & Exibition on Non-destructive Evaluation pp. 70–74 (2009)

  2. Alleyne, D., Cawley, P.: The excitation of Lamb waves in pipes using guided waves. J. Nondestr. Eval. 15(1), 11–20 (1996)

    Article  Google Scholar 

  3. Bormann, F., Plonka, G., Peter, T., Nemitz, O., Schmitte, T.: Sparse deconvolution methods for ultrasonic NDT. J. Nondestruct. Eval. 31(3), 225–244 (2012)

    Article  Google Scholar 

  4. Boufounos, P., Duarte, M., Baraniuk, R.: Sparse signal reconstruction from noisy compressive measurements using cross validation. In: 2007 IEEE/SP 14th Workshop on Statistical Signal Processing, pp. 299–303 (2007)

  5. Davies, J., Cawley, P.: The application of synthetic focusing for imaging crack-like defects in pipelines using guided waves. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 4(56), 759–771 (2009)

    Article  Google Scholar 

  6. Dehghan-Niri, E., Salamone, S.: A multi-helical ultrasonic imaging approach for the structural health monitoring of cylindrical structures. Struct. Health Monit. 14(1), 73–85 (2015)

    Article  Google Scholar 

  7. Deng, W., Yin, W., Zhang, Y.: Group sparse optimization by alternating direction method. Tech. rep., Department of Computational and Applied Mathematics. Technical Report TR11 -06 (2011)

  8. Ebrahimi-Zadeh, J., Dehmollaian, M., Mohammadpour-Aghdam, K.: Electromagnetic time-reversal imagining of pinholes in pipes. IEEE Trans. Antennas Propag. 64(4), 1356–1363 (2016)

    Article  MATH  Google Scholar 

  9. Ebrahimkhanlou, A., Dubuc, B., Salamone, S.: Damage localization in metallic plate structures using edge-reflected lamb waves. Smart Mater. Struct. 25(8), 085,035 (2016)

    Article  Google Scholar 

  10. Eldar, Y., Kuppinger, P., Bolckei, H.: Block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans. Singal Process. 58(6), 3042–3054 (2010)

    Article  MathSciNet  Google Scholar 

  11. Gazis, D.: three-Dimensional investigation of the propagation of waves in hollow circular cylinders. I: analytical foundation. J. Acoust. Soc. Am. 31(5), 568–573 (1959)

    Article  MathSciNet  Google Scholar 

  12. Gazis, D.: Three-dimensional investigation of the propagation of waves in hollow circular cylinders. II: numerical results. J. Acoust. Soc. Am. 31(5), 573–578 (1959)

    Article  MathSciNet  Google Scholar 

  13. Giurgiutiu, V., Santoni-Bottai, G.: Structural health monitoring of composite structures with piezoelectric wafer active sensors. AIAA J. 49(3), 565–581 (2011)

    Article  Google Scholar 

  14. Golato, A., Ahmad, F., Santhanam, S., Amin, M.: Multipath exploitation for enhanced defect imaging using lamb waves. NDT E Int. 92, 1–9 (2017)

    Article  Google Scholar 

  15. Golato, A., Santhanam, S., Ahmad, F., Amin, M.: Multimodal exploitation and sparse reconstruction for guided-wave structural health monitoring. In: Proceedings of the SPIE, vol. 9484, p. 94840L (2015)

  16. Golato, A., Santhanam, S., Ahmad, F., Amin, M.: Multipath exploitation in a sparse reconstruction approach to Lamb wave based structural health monitoring. In: Proceedings of the International Workshop Structural Health Monitoring (2015)

  17. Golato, A., Santhanam, S., Ahmad, F., Amin, M.: Multimodal sparse reconstruction in guided wave imaging of defects in plates. J. Electron. Imaging 25(4), 04,013 (2016)

    Article  Google Scholar 

  18. Golato, A., Santhanam, S., Ahmad, F., Amin, M.: Sparsity based defect imaging in pipes using guided waves. In: Proceedings of the SPIE, vol. 9857, p. 98570K (2016)

  19. Hamidi, S., ShahbazPanahi, S.: Sparse signal recovery based imaging in the presence of mode conversion with application to non-destructive testing. IEEE Trans. Signal Process. 64(5), 1352–1364 (2016)

    Article  MathSciNet  Google Scholar 

  20. Harley, J., Thavornpitak, N., Moura, J.M.F.: Delay-and-sum technique for localization of active sources in cylindrical objects. In: Proceedings of the Rev. of Quantitative Nondestructive Evaluation, vol. 1511, p. 294 (2013)

  21. Huthwaite, P., Seher, M.: Robust helical path separation for thickness mapping of pipes by guided wave tomography. IEEE Trans. Ultrason. Ferroelectrc. Freq. Control 62(5), 927–937 (2015)

    Article  Google Scholar 

  22. Huthwaite, P., Simonetti, F.: High resolution guided wave tomography. Wave Motion 50, 979–993 (2013)

    Article  MathSciNet  Google Scholar 

  23. Izadpanah, S., Rashed, G., Sodagar, S.: Using ultrasonic guided waves in evaluation of pipes. In: Second International Conference on Technical Inspection and NDT (2008)

  24. Kessler, S., Spearing, S., Soutis, C.: Damage detection in composite materials using Lamb wave methods. Smart Mater. Struct. 11(2), 269–278 (2002)

    Article  Google Scholar 

  25. Konstantinidis, G., Drinkwater, B., Wilcox, P.: The temperature stability of guided wave structural health monitoring systems. Smart Mater. Struct. 15(4), 967–976 (2006)

    Article  Google Scholar 

  26. Leigsnering, M., Ahmad, F., Amin, M., Zoubir, A.: Multipath exploitation in through-the-wallradar imaging using sparse reconstruction. IEEE Trans. Aerosp. Electron. Syst. 50(2), 920–939 (2014)

    Article  Google Scholar 

  27. Leonard, K., Hinders, M.: Guided wave helical ultrasonic tomography of pipes. J. Acoust. Soc. Am. 114(2), 767–774 (2003)

    Article  Google Scholar 

  28. Leonard, K., Hinders, M.: Lamb wave tomography of pipe-like structures. Ultrasonics 43, 574–583 (2005)

    Article  Google Scholar 

  29. Levine, R., Michaels, J.: Block-sparse reconstruction and imaging for Lamb wave structural health monitoring. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(6), 1006–1015 (2014)

    Article  Google Scholar 

  30. Liu, Z., Kleiner, Y.: State-of-the-art review of technologies for pipe structural health monitoring. IEEE Sens. J. 12(6), 1987–1992 (2012)

    Article  Google Scholar 

  31. Lowe, M., Alleyne, D., Cawley, P.: Defect detection in pipes using guided waves. Ultrasonics 36(1), 147–154 (1998)

    Article  Google Scholar 

  32. Lowe, M., Cawley, P.: Long range guided wave inspection usage-current commercial capabilities and research direction http://www3.imperial.ac.uk/pls/portallive/docs/1/55745699.PDF (2006)

  33. Lowe, P., Sanderson, R., Pedram, S., Boulgouris, N., Mudge, P.: Inspection of pipelines using the first longitudinal guided wave mode. Phys. Procedia 70, 338–342 (2015)

    Article  Google Scholar 

  34. O’Donoughue, N., Harley, J., Moura, J.: Time reversal beamforming of guided waves in pipes with a single defect. In: Proceedings of the Asilomar Conference on Signals, Systems, and Computers pp. 1786–1790 (2010)

  35. O’Donoughue, N., Harley, J., Moura, J., Jin, Y.: Detection of structural defects in pipes using time reversal of guided waves. In: Proceedings Asilomar Conference on Signals, Systems, and Computers pp. 1683–1686 (2009)

  36. Raghavan, A., Cesnik, C.: Review of guided-wave structural health monitoring. Shock Vib. Digest 39(2), 91–114 (2007)

    Article  Google Scholar 

  37. Ramadas, C., Balasubramaniam, K., Joshi, M., Krishnamurthy, C.: Interaction of the primary antisymmetric Lamb mode with symmetric delaminations: numerical and experimental studies. Smart Mater. Struct. 18(1), 1–7 (2009)

    Google Scholar 

  38. Rose, J.: Ultrasonic Waves in Solid Media. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  39. Santhanam, S., Demirli, R.: Reflection and transmission of fundamental Lamb wave modes obliquely incident on a crack in a plate. In: Proceedings of the IEEE International Ultrasonics Symposium, pp. 2690–2693 (2012)

  40. Sharif-Khodaei, Z., Aliabadi, M.: Maximum-likelihood estimation of damage location in guided-wave structural health monitoring. Proc. R. Soc. Lond. 467(2133), 2575–2596 (2011)

    Article  Google Scholar 

  41. Sharif-Khodaei, Z., Aliabadi, M.: Assessment of delay-and-sum algorithms for damage detection in aluminium and composite plates. Smart Mater. Struct. 23(7), 075,007 (2014)

    Article  Google Scholar 

  42. Sohn, H., Park, G., Walt, J., Limback, N., Farrar, C.: Wavelet-based active sensing for delamination detection in composite structures. Smart Mater. Struct. 13(1), 153–160 (2004)

    Article  Google Scholar 

  43. Sonia, D., Fouad, B.: Propagation of guided waves in a hollow circular cylinder application to non destructive testing. EPJ Web Conf. 6, 15,004 (2010)

    Article  Google Scholar 

  44. Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. Ser. B Stat. Methodol. 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  45. Tua, P., Quek, S., Wang, Q.: Detection of cracks in plates using piezo-actuated Lamb waves. Smart Mater. Struct. 13(4), 643–660 (2004)

    Article  Google Scholar 

  46. Velichko, A., Wilcox, P.: Excitation and scattering of guided waves: relationships between solutions for plates and pipes. J. Acoust. Soc. Am. 6(125), 3623–3631 (2009)

    Article  Google Scholar 

  47. Wang, C., Rose, J., Chang, F.: A synthetic time-reversal imaging method for structural health monitoring. Smart Mater. Struct. 13(2), 415–423 (2004)

    Article  Google Scholar 

  48. Wang, D., Ye, L., Su, Z., Lu, Y., Li, C., Meng, G.: Probabilistic damage identification based on correlation analysis using guided wave signals in aluminum plates. Struct. Health Monit. Int. J. 9, 133–144 (2010)

    Article  Google Scholar 

  49. Willey, C., Simonetti, F., Nagy, P., Instanes, G.: Guided wave tomography of pipes with high-order helical modes. NDT E Int. 65, 21–58 (2014)

    Article  Google Scholar 

  50. Ying, Y., Harley, J., Garrett, J., Jin, Y., Moura, J., O’Donoughue, N., oppenheim, I., Soibelman, L.: Time reversal for damage detection in pipes. In: Proceedings of the SPIE, vol. 7647, p. 76473S (2010)

  51. Yoon, Y., Amin, M.: Spatial filtering for wall-clutter mitigation in through-the-wall radar imaging. IEEE Trans. Geosci. Remote Sens. 47(9), 3192–3208 (2009)

    Article  Google Scholar 

  52. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J.R. Stat. Soc. B 68(1), 49–67 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Golato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golato, A., Ahmad, F., Santhanam, S. et al. Multi-Helical Path Exploitation in Sparsity-Based Guided-Wave Imaging of Defects in Pipes. J Nondestruct Eval 37, 27 (2018). https://doi.org/10.1007/s10921-018-0481-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-018-0481-5

Keywords

Navigation