Skip to main content
Log in

Multi-parameter Evaluation of Magnetic Barkhausen Noise in Carbon Steel

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The sensitivity of magnetic Barkhausen noise to many factors has limited its potential application for basic material characterization and detection of residual stress in carbon steel, a common structural material. The present work investigates Barkhausen noise response in plain carbon steel under conditions of varying carbon content, applied elastic stress and different magnetization level. The surface Barkhausen noise measurement system uses a feedback for controlling the flux waveform, which facilitates reproducibility of measurements and also permits extraction of additional parameters from the B–H loop of magnetic circuit. Barkhausen noise parameters correlate with known material parameters, such as coercivity, which vary with carbon content and stress. These results demonstrate the potential for in-situ characterization of carbon steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jiles, D.C.: Dynamics of domain magnetization and the Barkhausen effect. Czechoslov. J. Phys. 50(8), 893–924 (2000)

    Article  Google Scholar 

  2. Blaow, M., Evans, J., Shaw, B.: Magnetic Barkhausen noise: the influence of microstructure and deformation in bending. Acta Mater. 53(2), 279–287 (2005)

    Article  Google Scholar 

  3. Yelbay, H.I., Cam, I., Gür, C.H.: Non-destructive determination of residual stress state in steel weldments by magnetic Barkhausen noise technique. NDT&E Int. 43(1), 29–33 (2010)

    Article  Google Scholar 

  4. Xin, Q., Shu, D., Hui, L., Wei, W., Chen, J.: Magnetic Barkhausen noise, metal magnetic memory testing and estimation of the ship plate welded structure stress. J. Nondestruct. Eval. 31(1), 80–89 (2012)

    Article  Google Scholar 

  5. Santa-Aho, S., Vippola, M., Sorsa, A., Latokartano, J., Lindgren, M., Leiviskä, K., Lepistö, T.: Development of Barkhausen noise calibration blocks for reliable grinding burn detection. J. Mater. Process. Technol. 212(2), 408–416 (2012)

    Article  Google Scholar 

  6. Mandal, K., Dufour, D., Atherton, D.: Use of magnetic Barkhausen noise and magnetic flux leakage signals for analysis of defects in pipeline steel. IEEE. Trans. Magn. 35(3), 2007–2017 (1999)

    Article  Google Scholar 

  7. Vourna, P., Ktena, A., Hristoforou, E.: Residual stress analysis in nonoriented electrical steel sheets by Barkhausen noise measurements. IEEE Trans. Magn. 50(4), 1–4 (2014)

    Article  Google Scholar 

  8. Pérez-Benítez, J., Espina-Hernández, J., Martínez-Ortiz, P.: Unwrapping the influence of multiple parameters on the magnetic Barkhausen noise signal using self-organizing maps. NDT&E Int. 54, 166–170 (2013)

    Article  Google Scholar 

  9. Pérez-Benítez, J., Padovese, L.: Study of the influence of simultaneous variation of magnetic material microstructural features on domain wall dynamics. J. Magn. Magn. Mater. 322(20), 3101–3105 (2010)

    Article  Google Scholar 

  10. Samimi, A.A., Krause, T.W., Clapham, L.: Stress-response of magnetic Barkhausen noise in submarine hull steel: a comparative study. J. Nondestruct. Eval. 35(2), 1–6 (2016)

    Article  Google Scholar 

  11. Sakamoto, H., Okada, M., Homma, M.: Theoretical analysis of Barkhausen noise in carbon steels. IEEE Trans. Magn. 23(5), 2236–2238 (1987)

    Article  Google Scholar 

  12. Clapham, L., Jagadish, C., Atherton, D.: The influence of pearlite on Barkhausen noise generation in plain carbon steels. Acta Metall. Mater. 39(7), 1555–1562 (1991)

    Article  Google Scholar 

  13. Dhar, A., Atherton, D.: Influence of magnetizing parameters on the magnetic Barkhausen noise. IEEE Trans. Magn. 28(6), 3363–3366 (1992)

    Article  Google Scholar 

  14. Stefanita, C.-G., Atherton, D., Clapham, L.: Plastic versus elastic deformation effects on magnetic Barkhausen noise in steel. Acta Mater. 48(13), 3545–3551 (2000)

    Article  Google Scholar 

  15. Anglada-Rivera, J., Padovese, L., Capo-Sanchez, J.: Magnetic Barkhausen noise and hysteresis loop in commercial carbon steel: influence of applied tensile stress and grain size. J. Magn. Magn. Mater. 231(2), 299–306 (2001)

    Article  Google Scholar 

  16. Ranjan, R., Jiles, D.C., Rastogi, P.: Magnetic properties of decarburized steels: an investigation of the effects of grain size and carbon content. IEEE Trans. Magn. 23(3), 1869–1876 (1987)

    Article  Google Scholar 

  17. Garstka, T., Krajowej, A.A.: The influence of product thickness on the measurements by Barkhausen noise method. J. Achiev. Mater. Manuf. Eng. 27(1), 47–50 (2008)

    Google Scholar 

  18. Chukwuchekwa, N., Moses, A., Anderson, P.: Effects of strip thickness and silicon content on magnetic Barkhausen noise of non-oriented electrical steel at 50 Hz. Int. J. Appl. Electromagn. Mech. 39(1), 541–545 (2012)

    Google Scholar 

  19. White, S., Krause, T.W., Clapham, L.: A multichannel magnetic flux controller for periodic magnetizing conditions. IEEE Trans. Instrum. Meas. 61(7), 1896–1907 (2012)

    Article  Google Scholar 

  20. White, S.A.: A Barkhausen Noise Testing System for CANDU Feeder Pipes. PhD thesis, Queen’s University, Kingston (2009)

  21. Koo, K., Yau, M., Ng, D.H., Lo, C.: Characterization of pearlite grains in plain carbon steel by Barkhausen emission. Mater. Sci. Eng. A 351(1), 310–315 (2003)

    Article  Google Scholar 

  22. Pérez-Benítez, J., Capo-Sanchez, J., Padovese, L.: Modeling of the Barkhausen jump in low carbon steel. J. Appl. Phys. 103(4), 04391–04396 (2008)

    Article  Google Scholar 

  23. Lo, C., Lee, S., Kerdus, L., Jiles, D.: Examination of the relationship between the parameters of Barkhausen effect model and microstructure of magnetic materials. J. Appl. Phys. 91(10), 7651–7653 (2002)

    Article  Google Scholar 

  24. Thompson, S., Tanner, B.: The magnetic properties of pearlitic steels as a function of carbon content. J. Magn. Magn. Mater. 123(3), 283–298 (1993)

    Article  Google Scholar 

  25. Saquet, O., Chicois, J., Vincent, A.: Barkhausen noise from plain carbon steels: analysis of the influence of microstructure. Mater. Sci. Eng. A 269(1), 73–82 (1999)

    Article  Google Scholar 

  26. Cullity, B.D., Graham, C.D.: Introduction to Magnetic Materials. Wiley, Hoboken (2011)

    Google Scholar 

  27. Stupakov, O., Perevertov, O., Tomáš, I., Skrbek, B.: Evaluation of surface decarburization depth by magnetic Barkhausen noise technique. J. Magn. Magn. Mater. 323(12), 1692–1697 (2011)

    Article  Google Scholar 

  28. Stupakov, O., Uchimoto, T., Takagi, T.: Magnetic anisotropy of plastically deformed low-carbon steel. J. Phys. D Appl. Phys. 43(19), 195003 (2010)

    Article  Google Scholar 

  29. Stupakov, O., Perevertov, O., Stoyka, V., Wood, R.: Correlation between hysteresis and Barkhausen noise parameters of electrical steels. IEEE Trans. Magn. 46(2), 517–520 (2010)

    Article  Google Scholar 

  30. Stupakov, O., Takagi, T., Uchimoto, T.: Alternative magnetic parameters for characterization of plastic tension. NDT&E Int. 43(8), 671–676 (2010)

    Article  Google Scholar 

  31. Tanner, B., Szpunar, J., Willcock, S., Morgan, L., Mundell, P.: Magnetic and metallurgical properties of high-tensile steels. J. Mater. Sci. 23(12), 4534–4540 (1988)

    Article  Google Scholar 

  32. Sablik, M., Burkhardt, G., Kwun, H., Jiles, D.: A model for the effect of stress on the low-frequency harmonic content of the magnetic induction in ferromagnetic materials. J. Appl. Phys. 63(8), 3930–3932 (1988)

    Article  Google Scholar 

  33. Krause, T.W., Clapham, L., Pattantyus, A., Atherton, D.L.: Investigation of the stress-dependent magnetic easy axis in steel using magnetic barkhausen noise. J. Appl. Phys. 79(8), 4242–4252 (1996)

  34. Stefanita, C., Clapham, L., Atherton, D.: Subtle changes in magnetic Barkhausen noise before the macroscopic elastic limit. J. Mater. Sci. 35(11), 2675–2681 (2000)

    Article  Google Scholar 

  35. Pérez-Benítez, J., Padovese, L., Capó-Sánchez, J., Anglada-Rivera, J.: Investigation of the magnetic Barkhausen noise using elementary signals parameters in 1000 commercial steel. J. Magn. Magn. Mater. 263(1), 72–77 (2003)

    Article  Google Scholar 

  36. Inaguma, T., Sakamoto, H., Hasegawa, M.: Stress dependence of Barkhausen noise in spheroidized cementite carbon steel. IEEE Trans. Magn. 49(4), 1310–1317 (2013)

    Article  Google Scholar 

  37. Kasai, N., Koshino, H., Sekine, K., Kihira, H., Takahashi, M.: Study on the effect of elastic stress and microstructure of low carbon steels on Barkhausen noise. J. Nondestruct. Eval. 32(3), 277–285 (2013)

    Article  Google Scholar 

  38. Langman, R.: Magnetic properties of mild steel under conditions of biaxial stress. IEEE Trans. Magn. 26(4), 1246–1251 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Steven White for his help on system troubleshooting, and Philip Weetman for useful discussions. This work was supported by Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash A. Samimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samimi, A.A., Krause, T.W. & Clapham, L. Multi-parameter Evaluation of Magnetic Barkhausen Noise in Carbon Steel. J Nondestruct Eval 35, 40 (2016). https://doi.org/10.1007/s10921-016-0358-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-016-0358-4

Keywords

Navigation