Skip to main content
Log in

Comparing Linear Viscoelastic Properties of Asphalt Concrete Measured by Laboratory Seismic and Tension–Compression Tests

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Seismic measurements and conventional cyclic loading have been applied to a cylindrical asphalt concrete specimen to compare the complex modulus and complex Poisson’s ratio between the two testing methods. The seismic moduli and Poisson’s ratio have been characterized by optimizing finite element calculated frequency response functions to measurements performed at different temperatures. An impact hammer and an accelerometer were used to measure the frequency response functions of the specimen which was placed on soft foam for free boundary conditions. The cyclic loading was performed by applying both tension and compression to the specimen while measuring the displacements in the axial and radial direction. The Havriliak–Negami and the 2S2P1D model have been used to estimate master curves of the complex modulus and complex Poisson’s ratio from the seismic and the tension–compression tests. The seismic measurements performed at a lower strain level than the tension–compression test give a higher absolute value of the complex moduli (e.g. \({\sim }12\,\%\) at 100 Hz) and a lower phase angle compared to the tension–compression results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Migliori, A., Sarrao, J.L.: Resonant Ultrasound Spectroscopy: Applications to Physics, Materials Measurements and Nondestructive Evaluation. Wiley, New York (1997). ISBN 0-471-12360-9

    Google Scholar 

  2. Ryden, N., Park, C.H.: Fast simulated annealing inversion of surface waves on pavement using phase–velocity spectra. Geophysics 71(4), R49–58 (2006)

    Article  Google Scholar 

  3. Di Benedetto, H., Sauzéat, C., Sohm, J.: Stiffness of bituminous mixtures using ultrasonic wave propagation. RMPD 10(4), 789–814 (2009)

    Google Scholar 

  4. Norambuena-Contreras, J., Castro-Fresno, D., Vega-Zamanillo, A., Celaya, M., Lombillo-Vozmediano, I.: Dynamic modulus of asphalt mixture by ultrasonic direct test. NDT & E Int. 43, 629–634 (2010)

    Article  Google Scholar 

  5. Mounier, D., Di Benedetto, H., Sauzéat, C.: Determination of bituminous mixtures linear properties using ultrasonic wave propagation. Constr. Build. Mater. 36, 638–647 (2012)

    Article  Google Scholar 

  6. Whitmoyer, S.L., Kim, Y.R.: Determining asphalt concrete properties via the impact resonant method. J. Test. Eval. 22(2), 139–148 (1994)

    Article  Google Scholar 

  7. Kweon, G., Kim, Y.R.: Determination of the complex modulus of asphalt concrete using the impact resonance test. J. Transp. Res. Board 1970, 151–160 (2006)

    Article  Google Scholar 

  8. Lacroix, A., Kim, Y.R., Far, M.S.S.: Constructing the dynamic modulus mastercurve using impact resonance testing. Assoc. Asph. Paving Technol. 78, 67–102 (2009)

    Google Scholar 

  9. ASTM: C215–08, Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Frequencies of Concrete Specimens. American Society for Testing and Materials, West Conshohocken (2008)

  10. Ryden, N.: Resonant frequency testing of cylindrical asphalt samples. Eur. J. Environ. Civ. Eng. 15, 587–600 (2011)

    Article  Google Scholar 

  11. Gudmarsson, A., Ryden, N., Birgisson, B.: Application of resonant acoustic spectroscopy to asphalt concrete beams for determination of the dynamic modulus. Mater. Struct. 45, 1903–1913 (2012)

    Article  Google Scholar 

  12. Ren, Z., Atalla, N., Ghinet, S.: Optimization based identification of the dynamic properties of linearly viscoelastic materials using vibrating beam technique. ASME J. Vib. Acoust. 133(4), 1–12 (2011)

    Article  Google Scholar 

  13. Rupitsch, S.J., Ilg, J., Sutor, A., Lerch, R., Döllinger, M.: Simulation based estimation of dynamic mechanical properties for viscoelatic materials used for vocal fold models. J. Sound Vib. 330, 4447–4459 (2011)

    Article  Google Scholar 

  14. Renault, A., Jaouen, L., Sgard, F.: Characterization of elastic parameters of acoustical porous materials from beam bending vibrations. J. Sound Vib. 330, 1950–1963 (2011)

    Article  Google Scholar 

  15. Gudmarsson, A., Ryden, N., Birgisson, B.: Characterizing the low strain complex modulus of asphalt concrete specimens through optimization of frequency response functions. J. Acoust. Soc. Am. 132(4), 2304–2312 (2012)

    Article  Google Scholar 

  16. Doubbaneh, E.: Comportement mécanique des enrobes bitumineux des petits aux grandes déformations. Ph.D. dissertation, Institut National des Sciences Appliquées, ENTPE, Lyon (1995)

  17. Duttine, A., Di Benedetto, H., Ezaoui, A.: Anisotropic small strain elastic properties of sands and mixture of sand–clay measured by dynamic and static methods. Soils Found. 47(3), 457–472 (2007). doi:10.3208/sandf.47.457

    Article  Google Scholar 

  18. Ezaoui, A., Di Benedetto, H.: Experimental measurements of the global anisotropic elastic behaviour of dry Hostun sand during triaxial tests, and effect of sample preparation. Géotechnique 59(7), 621–635 (2009). doi:10.1680/geot.7.00042

    Article  Google Scholar 

  19. Nguyen, Q.T., Di Benedetto, H., Sauzéat, C.: Prediction of linear viscoelastic behaviour of asphalt mixes from binder properties and reversal. In: Kringos, N., Birgisson, B., Frost, D., Wang, L. (eds.) Multi-Scale Modeling and Characterization of Infrastructure Materials, vol. 8, pp. 237–248. Springer, Netherlands (2013)

    Chapter  Google Scholar 

  20. COMSOL Multiphysics: Version 4.3b. Structural Mechanics Module User’s Guide (2013)

  21. Neeman, A.G., Brannon, R., Jeremić, B., Van Gelder, A., Pang, A.: Decomposition and visualization of fourth-order elastic-plastic tensors. In: Hege, H.-C., Laidlaw, D., Pajarola, R., Staadt, O. (eds.)IEEE/EG Symposium on Volume and Point-Based Graphics, pp. 121–128 (2008)

  22. Yusoff, N.I.M., Shaw, M.T., Airey, G.D.: Modelling the linear viscoelastic rheological properties of bituminous binders. J. Constr. Build. Mater. 25(5), 2171–2189 (2011)

    Article  Google Scholar 

  23. Olard, F., Di Benedetto, H.: General “2S2P1D” model and relation between the linear viscoelastic behaviours of bitumnious binders and mixes. RMPD 4(2), 185–224 (2003)

    Google Scholar 

  24. Havriliak, S., Negami, S.: A complex plane analysis of \(\alpha \)-dispersions in some polymer systems. J. Polym. Sci. C 14, 99–117 (1996)

  25. Di Benedetto, H., Olard, F., Sauzéat, C., Delaporte, B.: Linear viscoelastic behaviour of bituminous materials: from binders to mixes. Road Mater. Pavement Des. 5(sup1), 163–202 (2004)

    Article  Google Scholar 

  26. Di Benedetto, H., Delaporte, B., Sauzéat, C.: Three-dimensional linear behavior of bituminous materials: experiments and modeling. Int. J. Geomech. 7(2), 149–157 (2007)

  27. Hartmann, B., Lee, G.F., Lee, J.D.: Loss factor height and width limits for polymer relaxations. J. Acoust. Soc. Am. 95, 226–233 (1994)

    Article  Google Scholar 

  28. Madigosky, W.M., Lee, G.F., Niemiec, J.M.: A method for modeling polymer viscoelastic data and the temperature shift function. J. Acoust. Soc. Am. 119, 3760–3765 (2006)

    Article  Google Scholar 

  29. Zhao, Y., Liu, H., Bai, L., Tan, Y.: Characterization of linear viscoelastic behavior of asphalt concrete using complex modulus model. J. Mater. Civ. Eng. 25(10), 1543–1548 (2013)

    Article  Google Scholar 

  30. Nguyen, H.M., Pouget, S., Di Benedetto, H., Sauzéat, C.: Time-temperature superposition principle for bituminous mixtures. Eur. J. Environ. Civ. Eng. 13(9), 1095–1107 (2009)

    Article  Google Scholar 

  31. Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701 (1955)

    Article  Google Scholar 

  32. Clec’h, P., Sauzéat, C., Di Benedetto, H.: Linear viscoelastic behaviour and anisotropy of bituminous mixture compacted with a French wheel compactor. Paving Mater. Pavement Anal., 103–115 (2010). doi:10.1061/41104(377)14

  33. Rollins, K.M., Evans, M.D., Diehl, N.B., Daily III, W.D.: Shear modulus and damping relationships for gravels. J. Geotech. Geoenviron. Eng. 124(5), 396–405 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

The Swedish transport administration (Trafikverket) and the Swedish construction industry’s organization (SBUF) are acknowledged for their financial support. A great appreciation is also given to the research group at Departement Génie Civil et Bâtiment in ENTPE at the University of Lyon for all their help and hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Gudmarsson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gudmarsson, A., Ryden, N., Di Benedetto, H. et al. Comparing Linear Viscoelastic Properties of Asphalt Concrete Measured by Laboratory Seismic and Tension–Compression Tests. J Nondestruct Eval 33, 571–582 (2014). https://doi.org/10.1007/s10921-014-0253-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-014-0253-9

Keywords

Navigation