Skip to main content
Log in

A New Positivity-Preserving Technique for High-Order Schemes to Solve Extreme Problems of Euler Equations on Structured Meshes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a new positivity-preserving (new PP) technique for fifth-order finite volume unequal-sized WENO schemes when solving some extreme problems of compressible Euler equations on structured meshes. After spatial reconstruction in each time marching, a detective process is used to examine the positivity of density and pressure at some checking points in each target cell. If the negativity happens at one checking point, a new compression limiter is carried out to ensure that the modified polynomials can achieve the positivity of density and pressure in the whole target cell instead of only at some discrete points. This treatment is easily implemented, owing to a quick and simple way to overestimate the minimum and maximum values of the polynomials of density and pressure in the target cell. Some numerical experiments for classical extreme problems show that the proposed method has an advantage in computational efficiency and robustness in comparison to the classical positivity-preserving techniques (Zhang and Shu in J Comput Phys 229:8918–8934, 2010), since the CFL number of 0.6 is allowed for all tests in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)

    Article  MathSciNet  Google Scholar 

  2. Cai, X., Zhang, X., Qiu, J.: Positivity-preserving high order finite volume HWENO schemes for compressible Euler equations. J. Sci. Comput. 68, 464–483 (2016)

    Article  MathSciNet  Google Scholar 

  3. Capdeville, G.: A central WENO scheme for solving hyperbolic conservation laws on non-uniform meshes. J. Comput. Phys. 227, 2977–3014 (2008)

    Article  MathSciNet  Google Scholar 

  4. Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011)

    Article  MathSciNet  Google Scholar 

  5. Christlieb, A.J., Liu, Y., Tang, Q., Xu, Z.: High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes. J. Comput. Phys. 281, 334–351 (2015)

    Article  MathSciNet  Google Scholar 

  6. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  Google Scholar 

  7. Fan, C., Zhang, X., Qiu, J.: Positivity-preserving high order finite volume hybrid Hermite WENO schemes for compressible Navier–Stokes equations. J. Comput. Phys. 445, 110596 (2021)

    Article  MathSciNet  Google Scholar 

  8. Fan, C., Zhang, X., Qiu, J.: Positivity-preserving high order finite difference WENO schemes for compressible Navier–Stokes equations. J. Comput. Phys. 467, 111446 (2022)

    Article  MathSciNet  Google Scholar 

  9. Gardner, C., Dwyer, S.: Numerical simulation of the XZ Tauri supersonic astrophysical jet. Acta Math. Sci. 29, 1677–1683 (2009)

    Article  Google Scholar 

  10. Guo, Y., Xiong, T., Shi, Y.: A positivity-preserving high order finite volume compact-WENO scheme for compressible Euler equations. J. Comput. Phys. 274, 505–523 (2014)

    Article  MathSciNet  Google Scholar 

  11. Ha, Y., Gardner, C.: Positive scheme numerical simulation of high Mach number astrophysical jets. J. Sci. Comput. 34, 247–259 (2008)

    Article  MathSciNet  Google Scholar 

  12. Ha, Y., Gardner, C., Gelb, A., Shu, C.-W.: Numerical simulation of high Mach number astrophysical jets with radiative cooling. J. Sci. Comput. 24, 597–612 (2005)

    Article  MathSciNet  Google Scholar 

  13. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005)

    Article  Google Scholar 

  14. Hu, X.Y., Adams, N., Shu, C.-W.: Positivity-preserving method for high-order conservative schemes solving compressible Euler equations. J. Comput. Phys. 242, 169–180 (2013)

    Article  MathSciNet  Google Scholar 

  15. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  Google Scholar 

  16. Korobeinikov, V.P.: Problems of Point-Blast Theory. American Institute of Physics (1991)

  17. Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws, M2AN. Math. Model. Numer. Anal. 33, 547–571 (1999)

    Article  MathSciNet  Google Scholar 

  18. Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22(2), 656–672 (2000)

    Article  MathSciNet  Google Scholar 

  19. Liang, C., Xu, Z.: Parametrized maximum principle preserving flux limiters for high order schemes solving multi-dimensional scalar hyperbolic conservation laws. J. Sci. Comput. 83, 2213–2238 (2013)

    Google Scholar 

  20. Linde, T., Roe, P.L.: Robust Euler codes. In: 13th Computational Fluid Dynamics Conference, AIAA Paper-97-2098

  21. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  Google Scholar 

  22. Perthame, B., Shu, C.-W.: On positivity preserving finite volume schemes for Euler equations. Numer. Math. 73, 119–130 (1996)

    Article  MathSciNet  Google Scholar 

  23. Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. Academic Press, New York (1959)

    Google Scholar 

  24. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  25. Wang, C., Zhang, X., Shu, C.-W., Ning, J.: Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations. J. Comput. Phys. 231, 653–665 (2012)

    Article  MathSciNet  Google Scholar 

  26. Xiong, T., Qiu, J.-M., Xu, Z.: Parametrized positivity preserving flux limiters for the high order finite difference WENO scheme solving compressible Euler equations. J. Sci. Comput. 67, 1066–1088 (2015)

    Article  MathSciNet  Google Scholar 

  27. Xu, Z.: Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws: one-dimensional scalar problem. Math. Comput. 83, 2213–2238 (2014)

    Article  MathSciNet  Google Scholar 

  28. Zhang, X.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier–Stokes equations. J. Comput. Phys. 328, 301–343 (2017)

    Article  MathSciNet  Google Scholar 

  29. Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)

    Article  MathSciNet  Google Scholar 

  30. Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)

    Article  MathSciNet  Google Scholar 

  31. Zhang, X., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. Proc. R. Soc. A Math. Phys. Eng. Sci. 467, 2752–2776 (2011)

    MathSciNet  Google Scholar 

  32. Zhang, X., Shu, C.-W.: Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. J. Comput. Phys. 231, 2245–2258 (2012)

    Article  MathSciNet  Google Scholar 

  33. Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 318, 110–121 (2016)

    Article  MathSciNet  Google Scholar 

  34. Zhu, J., Qiu, J.: A new type of finite volume WENO schemes for hyperbolic conservation laws. J. Sci. Comput. 73, 1338–1359 (2017)

    Article  MathSciNet  Google Scholar 

  35. Zhu, J., Qiu, J.: A new third order finite volume weighted essentially non-oscillatory scheme on tetrahedral meshes. J. Comput. Phys. 349, 220–232 (2017)

    Article  MathSciNet  Google Scholar 

  36. Zhu, J., Qiu, J.: New finite volume weighted essentially nonoscillatory schemes on triangular meshes. SIAM J. Sci. Comput. 40, A903–A928 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work of Y. Tan and J. Zhu is partially supported by NSFC grant 11872210. The work of Q. Zhang is partially supported by NSFC grant 12071214.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Y., Zhang, Q. & Zhu, J. A New Positivity-Preserving Technique for High-Order Schemes to Solve Extreme Problems of Euler Equations on Structured Meshes. J Sci Comput 99, 27 (2024). https://doi.org/10.1007/s10915-024-02493-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02493-6

Keywords

Mathematics Subject Classification

Navigation