Skip to main content
Log in

A Second-Order Exponential Time Differencing Multi-step Energy Stable Scheme for Swift–Hohenberg Equation with Quadratic–Cubic Nonlinear Term

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this article, we propose and analyze an energy stable, linear, second-order in time, exponential time differencing multi-step (ETD-MS) method for solving the Swift–Hohenberg equation with quadratic–cubic nonlinear term. The ETD-based explicit multi-step approximations and Fourier collocation spectral method are applied in time integration and spatial discretization of the corresponding equation, respectively. In particular, a second-order artificial stabilizing term, in the form of \(A\tau ^2\frac{\partial (\varDelta ^2+1)u}{\partial t}\), is added to ensure the energy stability. The long-time unconditional energy stability of the algorithm is established rigorously. In addition, error estimates in \(\ell ^\infty (0,T;\ell ^2)\)-norm are derived, with a careful estimate of the aliasing error. Numerical examples are carried out to verify the theoretical results. The long-time simulation demonstrates the stability and the efficiency of the numerical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availibility

My manuscript has no associated data or the data will not be deposited.

References

  1. Adams, R.A., Fournier, J.J.: Sobolev Spaces, 2nd edn. Academic press, Cambridge (2003)

    Google Scholar 

  2. Agmon, S.: Lectures on Elliptic Boundary Value Problems. American Mathematical Soc., Providence (2010)

    Google Scholar 

  3. Ball, P.: The Self-Made Tapestry: Pattern Formation in Nature. Oxford University Press, Oxford (1999)

    Google Scholar 

  4. Baskaran, A., Hu, Z., Lowengrub, J.S., Wang, C., Wise, S.M., Zhou, P.: Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation. J. Comput. Phys. 250, 270–292 (2013)

    MathSciNet  Google Scholar 

  5. Baskaran, A., Lowengrub, J.S., Wang, C., Wise, S.M.: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 51, 2851–2873 (2013)

    MathSciNet  Google Scholar 

  6. Van den Berg, G.J.B., Peletier, L.A., Troy, W.C.: Global branches of multi-bump periodic solutions of the Swift–Hohenberg equation. Arch. Ration. Mech. Anal. 158, 91–153 (2001)

    MathSciNet  Google Scholar 

  7. Braaksma, B., Iooss, G., Stolovitch, L.: Proof of quasipatterns for the Swift–Hohenberg equation. Commun. Math. Phys. 353, 37–67 (2017)

    MathSciNet  Google Scholar 

  8. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)

    Google Scholar 

  9. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer, Berlin (2007)

    Google Scholar 

  10. Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38, 67–86 (1982)

    MathSciNet  Google Scholar 

  11. Chen, W., Li, W., Luo, Z., Wang, C., Wang, X.: A stabilized second order exponential time differencing multistep method for thin film growth model without slope selection. ESAIM Math. Model. Numer. Anal. 54, 727–750 (2020)

    MathSciNet  Google Scholar 

  12. Chen, W., Li, W., Wang, C., Wang, S., Wang, X.: Energy stable higher-order linear ETD multi-step methods for gradient flows: application to thin film epitaxy. Res. Math. Sci. 7, 1–27 (2020)

    MathSciNet  Google Scholar 

  13. Chen, W., Wang, C., Wang, X., Wise, S.M.: A linear iteration algorithm for a second-order energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 59, 574–601 (2014)

    MathSciNet  Google Scholar 

  14. Chen, W., Wang, S., Wang, X.: Energy stable arbitrary order ETD-MS method for gradient flows with Lipschitz nonlinearity. CSIAM Trans. Appl. Math. 2, 460–483 (2021)

    MathSciNet  Google Scholar 

  15. Chen, W., Wang, X., Yan, Y., Zhang, Z.: A second order BDF numerical scheme with variable steps for the Cahn–Hilliard equation. SIAM J. Numer. Anal. 57, 495–525 (2019)

    MathSciNet  Google Scholar 

  16. Cheng, K., Qiao, Z., Wang, C.: A third order exponential time differencing numerical scheme for no-slope-selection epitaxial thin film model with energy stability. J. Sci. Comput. 81, 154–185 (2019)

    MathSciNet  Google Scholar 

  17. Cheng, K., Wang, C., Wise, S.M.: An energy stable BDF2 Fourier pseudo-spectral numerical scheme for the square phase field crystal equation. Commun. Comput. Phys. 26, 1335–1364 (2019)

    MathSciNet  Google Scholar 

  18. Cheng, K., Wang, C., Wise, S.M., Wu, Y.: A third order accurate in time, BDF-type energy stable scheme for the Cahn–Hilliard equation. Numer. Math. Theory Methods Appl. 15, 279–303 (2022)

    MathSciNet  Google Scholar 

  19. Cheng, M., Warren, J.A.: An efficient algorithm for solving the phase field crystal model. J. Comput. Phys. 227, 6241–6248 (2008)

    MathSciNet  Google Scholar 

  20. Condette, N., Melcher, C., Süli, E.: Spectral approximation of pattern-forming nonlinear evolution equations with double-well potentials of quadratic growth. Math. Comput. 80, 205–223 (2011)

    MathSciNet  Google Scholar 

  21. Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002)

    MathSciNet  Google Scholar 

  22. Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851 (1993)

    Google Scholar 

  23. Dehghan, M., Abbaszadeh, M., Khodadadian, A., Heitzinger, C.: Galerkin proper orthogonal decomposition-reduced order method (POD-ROM) for solving generalized Swift–Hohenberg equation. Int. J. Numer. Methods Heat Fluid Flow 29, 2642–2665 (2019)

    Google Scholar 

  24. Du, Q., Zhu, W.: Stability analysis and application of the exponential time differencing schemes. J. Comput. Math. 22, 200–209 (2004)

    MathSciNet  Google Scholar 

  25. Du, Q., Zhu, W.: Analysis and applications of the exponential time differencing schemes and their contour integration modifications. BIT Numer. Math. 45, 307–328 (2005)

    MathSciNet  Google Scholar 

  26. Elder, K.R., Grant, M.: Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E 70, 051605 (2004)

    Google Scholar 

  27. Elder, K.R., Katakowski, M., Haataja, M., Grant, M.: Modeling elasticity in crystal growth. Phys. Rev. Lett. 88, 245701 (2002)

    Google Scholar 

  28. Elsey, M., Wirth, B.: A simple and efficient scheme for phase field crystal simulation. ESAIM Math. Model. Numer. Anal. 47, 1413–1432 (2013)

    MathSciNet  Google Scholar 

  29. Evstigneev, N.M., Magnitskii, N.A., Sidorov, S.V.: Nonlinear dynamics of laminar-turbulent transition in three dimensional Rayleigh–Bénard convection. Commun. Nonlinear Sci. Numer. Simul. 15, 2851–2859 (2010)

    MathSciNet  Google Scholar 

  30. Feng, X., Tang, T., Yang, J.: Long time numerical simulations for phase-field problems using \(p\)-adaptive spectral deferred correction methods. SIAM J. Sci. Comput. 37, A271–A294 (2015)

    MathSciNet  Google Scholar 

  31. Gottlieb, S., Wang, C.: Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers equation. J. Sci. Comput. 53, 102–128 (2012)

    MathSciNet  Google Scholar 

  32. Hao, Y., Huang, Q., Wang, C.: A third order BDF energy stable linear scheme for the no-slope-selection thin film model. Commun. Comput. Phys. 29, 905–929 (2021)

    MathSciNet  Google Scholar 

  33. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    MathSciNet  Google Scholar 

  34. Hochbruck, M., Ostermann, A.: Exponential multistep methods of Adams-type. BIT Numer. Math. 51, 889–908 (2011)

    MathSciNet  Google Scholar 

  35. Hutt, A., Atay, F.M.: Analysis of nonlocal neural fields for both general and gamma-distributed connectivities. Physica D 203, 30–54 (2005)

    MathSciNet  Google Scholar 

  36. Ju, L., Li, X., Qiao, Z., Zhang, H.: Energy stability and convergence of exponential time differencing schemes for the epitaxial growth model without slope selection. Math. Comput. 87, 1859–1885 (2018)

    Google Scholar 

  37. Ju, L., Zhang, J., Zhu, L., Du, Q.: Fast explicit integration factor methods for semilinear parabolic equations. J. Sci. Comput. 62, 431–455 (2015)

    MathSciNet  Google Scholar 

  38. Kassam, A.K., Trefethen, L.N.: Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput. 26, 1214–1233 (2005)

    MathSciNet  Google Scholar 

  39. Khanmamedov, A.: Long-time dynamics of the Swift–Hohenberg equations. J. Math. Anal. Appl. 483, 123626 (2020)

    MathSciNet  Google Scholar 

  40. Kudryashov, N.A., Sinelshchikov, D.I.: Exact solutions of the Swift–Hohenberg equation with dispersion. Commun. Nonlinear Sci. Numer. Simul. 17, 26–34 (2012)

    MathSciNet  Google Scholar 

  41. Lee, H.G.: A semi-analytical Fourier spectral method for the Swift–Hohenberg equation. Comput. Math. Appl. 74, 1885–1896 (2017)

    MathSciNet  Google Scholar 

  42. Lee, H.G.: A non-iterative and unconditionally energy stable method for the Swift–Hohenberg equation with quadratic–cubic nonlinearity. Appl. Math. Lett. 123, 107579 (2022)

    MathSciNet  Google Scholar 

  43. Lee, H.G., Shin, J., Lee, J.Y.: First and second order operator splitting methods for the phase field crystal equation. J. Comput. Phys. 299, 82–91 (2015)

    MathSciNet  Google Scholar 

  44. Lee, K.J., Swinney, H.L.: Lamellar structures and self-replicating spots in a reaction–diffusion system. Phys. Rev. E 51, 1899 (1995)

    Google Scholar 

  45. Meng, X., Qiao, Z., Wang, C., Zhang, Z.: Artificial regularization parameter analysis for the no-slope-selection epitaxial thin film model. CSIAM Trans. Appl. Math. 1, 441–462 (2020)

    Google Scholar 

  46. Pei, S., Hou, Y., You, B.: A linearly second-order energy stable scheme for the phase field crystal model. Appl. Numer. Math. 140, 134–164 (2019)

    MathSciNet  Google Scholar 

  47. Peletier, L.A., Rottschäfer, V.: Pattern selection of solutions of the Swift–Hohenberg equation. Physica D 194, 95–126 (2004)

    MathSciNet  Google Scholar 

  48. Qiao, Z., Zhang, Z., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 33, 1395–1414 (2011)

    MathSciNet  Google Scholar 

  49. Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, New York (2011)

    Google Scholar 

  50. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2012)

    MathSciNet  Google Scholar 

  51. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    MathSciNet  Google Scholar 

  52. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Syst. 28, 1669–1691 (2010)

    MathSciNet  Google Scholar 

  53. Shi, A.C.: Nature of anisotropic fluctuation modes in ordered systems. J. Phys. Condens. Matter 11, 10183 (1999)

    Google Scholar 

  54. Shin, J., Lee, H.G., Lee, J.Y.: First and second order numerical methods based on a new convex splitting for phase-field crystal equation. J. Comput. Phys. 327, 519–542 (2016)

    MathSciNet  Google Scholar 

  55. Song, L., Zhang, Y., Ma, T.: Global attractor of a modified Swift–Hohenberg equation in Hk spaces. Nonlinear Anal. 72, 183–191 (2010)

    MathSciNet  Google Scholar 

  56. Swift, J., Hohenberg, P.C.: Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15, 319–328 (1977)

    Google Scholar 

  57. Wang, C., Wise, S.M.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49, 945–969 (2011)

    MathSciNet  Google Scholar 

  58. Wang, M., Huang, Q., Wang, C.: A second order accurate scalar auxiliary variable (SAV) numerical method for the square phase field crystal equation. J. Sci. Comput. 88, 33 (2021)

    MathSciNet  Google Scholar 

  59. Wang, X., Ju, L., Du, Q.: Efficient and stable exponential time differencing Runge–Kutta methods for phase field elastic bending energy models. J. Comput. Phys. 316, 21–38 (2016)

    MathSciNet  Google Scholar 

  60. Wen, B., Dianati, N., Lunasin, E., Chini, G.P., Doering, C.R.: New upper bounds and reduced dynamical modeling for Rayleigh–Bénard convection in a fluid saturated porous layer. Commun. Nonlinear Sci. Numer. Simul. 17, 2191–2199 (2012)

    MathSciNet  Google Scholar 

  61. Wise, S.M., Wang, C., Lowengrub, J.S.: An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47, 2269–2288 (2009)

    MathSciNet  Google Scholar 

  62. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44, 1759–1779 (2006)

    MathSciNet  Google Scholar 

  63. Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    MathSciNet  Google Scholar 

  64. Zhang, Z., Ma, Y.: On a large time-stepping method for the Swift–Hohenberg equation. Adv. Appl. Math. Mech. 8, 992–1003 (2016)

    MathSciNet  Google Scholar 

  65. Zhu, L., Ju, L., Zhao, W.: Fast high-order compact exponential time differencing Runge–Kutta methods for second-order semilinear parabolic equations. J. Sci. Comput. 67, 1043–1065 (2016)

    MathSciNet  Google Scholar 

Download references

Funding

This work is funded by three Funds, namely Beijing Municipal Natural Science Foundation (No. 1192003), National Natural Science Foundation of China (No. 12371386), and National Natural Science Foundation of China (No. 12201021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, M., Niu, Y. & Xu, Z. A Second-Order Exponential Time Differencing Multi-step Energy Stable Scheme for Swift–Hohenberg Equation with Quadratic–Cubic Nonlinear Term. J Sci Comput 99, 26 (2024). https://doi.org/10.1007/s10915-024-02490-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02490-9

Keywords

Mathematics Subject Classification

Navigation