Skip to main content
Log in

Universal AMG Accelerated Embedded Boundary Method Without Small Cell Stiffness

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop a universally applicable embedded boundary finite difference method, which results in a symmetric positive definite linear system and does not suffer from small cell stiffness. Our discretization is efficient for the wave, heat and Poisson equation with Dirichlet boundary conditions. When the system needs to be inverted we can use the conjugate gradient method, accelerated by algebraic multigrid techniques. A series of numerical tests for the wave, heat and Poisson equation and applications to shape optimization problems verify the accuracy, stability, and efficiency of our method. Our fast computational techniques can be extended to moving boundary problems (e.g. Stefan problem), to the Navier–Stokes equations, and to the Grad-Shafranov equations for which problems are posed on domains with complex geometry and fast simulations are of great interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Algorithm 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

The participants of this study did not give written consent for their data to be shared publicly, so due to the sensitive nature of the research supporting data is not available.

References

  1. Appelö, D., Petersson, N.A.: A fourth-order embedded boundary method for the wave equation. SIAM J. Sci. Comput. 34(6), 2982–3008 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Badia, S., Verdugo, F.: Gridap: an extensible finite element toolbox in Julia. J. Open Source Soft. 5(52), 2520 (2020)

    Article  Google Scholar 

  3. Barnett, G.A.: A robust RBF-FD formulation based on polyharmonic splines and polynomials. PhD thesis, University of Colorado Boulder, (2015)

  4. Britt, S., Turkel, E., Tsynkov, S.: A high order compact time/space finite difference scheme for the wave equation with variable speed of sound. J. Sci. Comput. 76(2), 777–811 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bruno, O.P., Lyon, M.: High-order unconditionally stable FC-AD solvers for general smooth domains I. Basic elements. J. Comput. Phys. 229(6), 2009–2033 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, H., Min, C., Gibou, F.: A supra-convergent finite difference scheme for the Poisson and heat equations on irregular domains and non-graded adaptive Cartesian grids. J. Sci. Comput. 31(1), 19–60 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, H., Min, C., Gibou, F.: A numerical scheme for the Stefan problem on adaptive Cartesian grids with supralinear convergence rate. J. Comput. Phys. 228(16), 5803–5818 (2009)

    Article  MATH  Google Scholar 

  8. Chen, S., Merriman, B., Osher, S., Smereka, P.: A simple level set method for solving Stefan problems. J. Comput. Phys. 135(1), 8–29 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chesshire, G., Henshaw, W.D.: Composite overlapping meshes for the solution of partial-differential equations. J. Comput. Phys. 90(1), 1–64 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coco, A., Russo, G.: Finite-difference ghost-point multigrid methods on Cartesian grids for elliptic problems in arbitrary domains. J. Comput. Phys. 241, 464–501 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Courant, R.: Variational methods for the solution of problems of equilibrium and vibrations. Bull. Am. Math. Soc. 49(1), 1–23 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  12. Flyer, N., Fornberg, B., Bayona, V., Barnett, G.A.: On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy. J. Comput. Phys. 321, 21–38 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fornberg, B., Driscoll, T.A., Wright, G., Charles, R.: Observations on the behavior of radial basis function approximations near boundaries. Comput. Math. Appl. 43(3–5), 473–490 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Geuzaine, C., Remacle, J.-F.: GMSH: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int. J. Numer. Meth. Eng. 79(11), 1309–1331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gibou, F., Fedkiw, R.: A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem. J. Comput. Phys. 202(2), 577–601 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gibou, F., Fedkiw, R.P., Cheng, L.T., Kang, M.: A second-order-accurate symmetric discretization of the Poisson equation on irregular domains. J. Comput. Phys. 176(1), 205–227 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Johansen, H., Colella, P.: A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains. J. Comput. Phys. 147(1), 60–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jomaa, Z., Macaskill, C.: The embedded finite difference method for the Poisson equation in a domain with an irregular boundary and Dirichlet boundary conditions. J. Comput. Phys. 202(2), 488–506 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Karatzas, E.N., Ballarin, F., Rozza, G.: Projection-based reduced order models for a cut finite element method in parametrized domains. Comput. Math. Appl. 79(3), 833–851 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Kreiss, H.-O., Petersson, N.A.: A second order accurate embedded boundary method for the wave equation with Dirichlet data. SIAM J. Sci. Comput. 27, 1141–1167 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kreiss, H.-O., Petersson, N.A., Yström, J.: Difference approximations for the second order wave equation. SIAM J. Numer. Anal. 40(5), 1940–1967 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kreiss, H.-O., Petersson, N.A., Yström, J.: Difference approximations of the Neumann problem for the second order wave equation. SIAM J. Numer. Anal. 42(3), 1292–1323 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, J.-R., Greengard, L.: High order marching schemes for the wave equation in complex geometry. J. Comput. Phys. 198(1), 295–309 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, Z.: A fast iterative algorithm for elliptic interface problems. SIAM J. Numer. Anal. 35(1), 230–254 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, S., Tang, Q., Tang, X.: A parallel cut-cell algorithm for the free-boundary grad-shafranov problem. SIAM J. Sci. Comput. 43(6), B1198–B1225 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lombard, B., Piraux, J.: Numerical treatment of two-dimensional interfaces for acoustic and elastic waves. J. Comput. Phys. 195(1), 90–116 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lombard, B., Piraux, J., Gelis, C., Virieux, J.: Free and smooth boundaries in 2-d finite-difference schemes for transient elastic waves. Geophys. J. Int. 172(1), 252–261 (2008)

    Article  Google Scholar 

  28. Lyon, M.: High-order unconditionally-stable FC-AD PDE solvers for general domains. PhD thesis, Caltech, (2009)

  29. Lyon, M., Bruno, O.P.: High-order unconditionally stable FC-AD solvers for general smooth domains II. Elliptic, parabolic and hyperbolic PDEs; theoretical considerations. J. Comput. Phys. 229(9), 3358–3381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Min, C., Gibou, F., Ceniceros, H.D.: A supra-convergent finite difference scheme for the variable coefficient poisson equation on non-graded grids. J. Comput. Phys. 218(1), 123–140 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ng, Y.T., Chen, H., Min, C., Gibou, F.: Guidelines for Poisson solvers on irregular domains with Dirichlet boundary conditions using the ghost fluid method. J. Sci. Comput. 41(2), 300–320 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pember, R.B., Bell, J.B., Colella, P., Curtchfield, W.Y., Welcome, M.L.: An adaptive cartesian grid method for unsteady compressible flow in irregular regions. J. Comput. Phys. 120(2), 278–304 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Peng, Z., Tang, Q., Tang, X.-Z.: An adaptive discontinuous petrov-galerkin method for the grad-shafranov equation. SIAM J. Sci. Comput. 42, B1227–B1249 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Peskin, C.S.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10(2), 252–271 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ruge, J.W. and Stüben, K.: Algebraic multigrid. In Multigrid methods, pages 73–130. SIAM, (1987)

  36. Schwartz, P., Barad, M., Colella, P., Ligocki, T.: A Cartesian grid embedded boundary method for the heat equation and Poisson’s equation in three dimensions. J. Comput. Phys. 211(2), 531–550 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Starius, G.: Composite mesh difference methods for elliptic boundary value problems. Numer. Math. 28(2), 243–258 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  38. Visher, J., Wandzura, S., White, A.: Stable, high-order discretization for evolution of the wave equation in 1+1 dimensions. J. Comput. Phys. 194(2), 395–408 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Volkov, E.A.: The method of composite meshes for finite and infinite regions with piecewise smooth boundary. Trudy Matematicheskogo Instituta imeni VA Steklova 96, 117–148 (1968)

    Google Scholar 

  40. Wandzura, S.: Stable, high-order discretization for evolution of the wave equation in 2 + 1 dimensions. J. Comput. Phys. 199(2), 763–775 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Weller, R., Shortely, H.: Calculation of stresses within the boundary of photoelastic models. J. Appl. Mech. 6, A71–A78 (1939)

    Article  Google Scholar 

  42. Wright, G.B.: Radial basis function interpolation: numerical and analytical developments. University of Colorado at Boulder, (2003)

Download references

Funding

This material is based upon work supported by the National Science Foundation under Grant No. DMS-1913076, DMS-2210286 & DMS-2208164 (D. Appelö), and in part by an AMS Simons Travel Grant (S. Liu). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation and American Mathematical Society.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Zhichao Peng, Daniel Appelö and Shuang Liu. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shuang Liu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Proof of Lemma 2.1

A Proof of Lemma 2.1

For the case \(n=1\) and \(n=2\), the lemma can be verified through direct computations of leading principal minors. We only focus on the case \(n\ge 3\).

The matrix \(\mathcal {D}^{(n)}(a,b)\) is manifestly symmetric. To prove that \(\mathcal {D}^{(n)}\in \mathbb {R}^{n\times n}\) is SPD, we use mathematical induction to prove that its leading principal minors are all positive. When \(1\le k\le n-1\), the k-th order leading principal minor of \(\mathcal {D}^{(n)}\in \mathbb {R}^{n\times n}\) is

$$\begin{aligned} Q^{(n)}_k(a) = \det \underbrace{\left( \begin{array}{llllll} a &{} -1 &{} 0 &{} \dots &{} 0 &{} 0\\ -1 &{} 2 &{}-1&{} \dots &{} 0 &{} 0\\ 0 &{} -1 &{} 2 &{} \dots &{} 0 &{} 0\\ \vdots &{} &{}\vdots &{} \vdots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} 0 &{} \dots &{} 2 &{} -1\\ 0 &{} 0 &{} 0 &{} \dots &{}-1 &{} 2 \end{array}\right) }_{k\times k}, \qquad 1\le k\le n-1. \end{aligned}$$
(31)

The n-th order leading principal minor of \(\mathcal {D}^{(n)}(a,b)\in \mathbb {R}^{n\times n}\) is

$$\begin{aligned} P^{(n)}(a,b) = \det \underbrace{\left( \begin{array}{llllll} a &{} -1 &{} 0 &{} \dots &{} 0 &{} 0\\ -1 &{} 2 &{}-1&{} \dots &{} 0 &{} 0\\ 0 &{} -1 &{} 2 &{} \dots &{} 0 &{} 0\\ \vdots &{} &{}\vdots &{} \vdots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} 0 &{} \dots &{} 2 &{} -1\\ 0 &{} 0 &{} 0 &{} \dots &{}-1 &{} b \end{array}\right) }_{n\times n}. \end{aligned}$$
(32)

(1) We first prove that if \(a>\frac{n-2}{n-1}\), then the first \(n-1\) principal minors of \(\mathcal {D}^{(n)}\in \mathbb {R}^{n\times n}\), namely \(Q^{(n)}_k(a)\) (\(1\le k\le n-1)\) are all positive.

For \(n=3\), with direct computations, one can check that if \( a>\frac{3-2}{3-1}=\frac{1}{2}\) then \(Q^{(3)}_1(a)\) and \(Q^{(3)}_2(a)\) are positive. Now, for the induction case \(n-1\), we assume if \(a>\frac{n-3}{n-2}\), then the first \(n-2\) principal minors of \(\mathcal {D}^{(n-1)}\), namely \(Q^{(n-1)}_k(a)\) \((1\le k\le n-2)\), are all positive. With this induction assumption, we will prove that if \(a>\frac{n-2}{n-1}\) then the first \(n-1\) principal minors of \(\mathcal {D}^{(n)}(a,b)\) are all positive.

The definition in (31) implies that \(Q^{(n)}_k(a)=Q^{(n-1)}_k(a)\) when \(1\le k\le n-2\). Moreover, if \(a>\frac{n-2}{n-1}\), then \(a>\frac{n-3}{n-2}\) and the induction assumption leads to

$$\begin{aligned} Q^{(n)}_k(a)=Q^{(n-1)}_k(a)>0,\; 1\le k\le n-2. \end{aligned}$$

Now, we only need to prove that \(Q^{(n)}_{n-1}\) is positive:

$$\begin{aligned} Q^{(n)}_{n-1}(a)&=\det \left( \begin{array}{llllll} a &{} -1 &{} 0 &{} \dots &{} 0 &{} 0\\ -1 &{} 2 &{}-1&{} \dots &{} 0 &{} 0\\ 0 &{} -1 &{} 2 &{} \dots &{} 0 &{} 0\\ \vdots &{} &{}\vdots &{} \vdots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} 0 &{} \dots &{} 2 &{} -1\\ 0 &{} 0 &{} 0 &{} \dots &{}-1 &{} 2 \end{array}\right) =\det \left( \begin{array}{llllll} a &{} -1 &{} 0 &{} \dots &{} 0 &{} 0\\ 0 &{} 2-\frac{1}{a} &{}-1&{} \dots &{} 0 &{} 0\\ 0 &{} -1 &{} 2 &{} \dots &{} 0 &{} 0\\ \vdots &{} &{}\vdots &{} \vdots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} 0 &{} \dots &{} 2 &{} -1\\ 0 &{} 0 &{} 0 &{} \dots &{}-1 &{} 2 \end{array}\right) \nonumber \\&= aQ^{(n-1)}_{n-2}\left( 2-\frac{1}{a}\right) . \end{aligned}$$
(33)

Moreover, if \(a>\frac{n-2}{n-1}>0\), then

$$\begin{aligned} 2-\frac{1}{a}>2-\frac{n-1}{n-2}=\frac{n-3}{n-2}, \end{aligned}$$
(34)

and together with the induction assumption for \(n-1\), we have

$$\begin{aligned} Q^{(n)}_{n-1}(a)= aQ^{(n-1)}_{n-2}\left( 2-\frac{1}{a}\right) >0. \end{aligned}$$

(2) Finally, we prove if \( a > \frac{(n-2)b-(n-3)}{(n-1)b-(n-2)}\) and \(b>\frac{n-2}{n-1}\), the last principal minor \(P^{(n)}(a,b)\) is positive. We perform an induction proof with respect to n.

For the base case, when \(n=3\), \(b>\frac{n-2}{n-1}=\frac{1}{2}\) and \(a > \frac{(n-2)b-(n-3)}{(n-1)b-(n-2)}=\frac{b}{2b-1}\). A direct computation shows that \(P^{(3)}(a,b)\) is positive. Now, we turn to the induction case, for \(n-1\), assume that

$$\begin{aligned} b>\frac{n-2}{n-3}\quad \text {and}\quad a > \frac{(n-3)b-(n-4)}{(n-2)b-(n-3)} \end{aligned}$$
(35)

implies that \(P^{(n-1)}(a,b)\) is positive.

We note that \(P^{(n)}(a,b)\) can be related to \(P^{(n-1)} \left( 2-\frac{1}{a},b\right) \) through the rules of determinants as follows:

$$\begin{aligned} P^{(n)}(a,b)&=\det \left( \begin{array}{llllll} a &{} -1 &{} 0 &{} \dots &{} 0 &{} 0\\ -1 &{} 2 &{}-1&{} \dots &{} 0 &{} 0\\ 0 &{} -1 &{} 2 &{} \dots &{} 0 &{} 0\\ \vdots &{} &{}\vdots &{} \vdots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} 0 &{} \dots &{} 2 &{} -1\\ 0 &{} 0 &{} 0 &{} \dots &{}-1 &{} b \end{array}\right) =\det \left( \begin{array}{llllll} a &{} -1 &{} 0 &{} \dots &{} 0 &{} 0\\ 0 &{} 2-\frac{1}{a} &{}-1&{} \dots &{} 0 &{} 0\\ 0 &{} -1 &{} 2 &{} \dots &{} 0 &{} 0\\ \vdots &{} &{}\vdots &{} \vdots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} 0 &{} \dots &{} 2 &{} -1\\ 0 &{} 0 &{} 0 &{} \dots &{}-1 &{} b \end{array}\right) \nonumber \\&= a P^{(n-1)} \left( 2-\frac{1}{a},b\right) . \end{aligned}$$
(36)

Now, we just need to verify that \(a>0\) and \(P^{(n-1)} \left( 2-\frac{1}{a},b\right) >0\) under the assumption that \(b>\frac{n-2}{n-1}\) and \(a > \frac{(n-2)b-(n-3)}{(n-1)b-(n-2)}\). As \(b>\frac{n-2}{n-1}\) and \(a> \frac{(n-2)b-(n-3)}{(n-1)b-(n-2)}\), we have

$$\begin{aligned}&(n-1)b-(n-2)>0,\quad (n-2)b-(n-3)\ge \frac{(n-2)^2-(n-1)(n-3)}{n-1}\frac{1}{n-1}>0,\\&0<\frac{1}{a}<\frac{(n-1)b-(n-2)}{(n-2)b-(n-3)}\quad \text {and}\quad a^*=2-\frac{1}{a}>2-\frac{(n-1)b-(n-2)}{(n-2)b-(n-3)}\\&=\frac{(n-3)b-(n-4)}{(n-2)b-(n-3)}. \end{aligned}$$

Hence, we have \(b=\frac{n-2}{n-1}>\frac{n-2}{n-3}\), and \(a^*>\frac{(n-3)b-(n-4)}{(n-2)b-(n-3)}\). The induction assumption for the \(n-1\) case in (35) is satisfied and \(P^{(n-1)} \left( 2-\frac{1}{a},b\right) =P^{(n-1)} \left( a^*,b\right) >0\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Z., Appelö, D. & Liu, S. Universal AMG Accelerated Embedded Boundary Method Without Small Cell Stiffness. J Sci Comput 97, 40 (2023). https://doi.org/10.1007/s10915-023-02353-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02353-9

Keywords

Navigation