Skip to main content
Log in

A Ginzburg-Landau-\({H}^{-1}\) Model and Its SAV Algorithm for Image Inpainting

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Image inpainting models and the corresponding numerical algorithms play key roles in image processing. At present, the visual output of the oscillatory inpainting area is usually not natural. In this paper, we propose an image inpainting model based on the Ginzburg-Landau functional and \({H}^{-1}\)-norm. In the model, the \({H}^{-1}\)-fidelity term performs well in preserving the edges of the oscillatory inpainting areas, and the Ginzburg-Landau functional can provide additional geometric content. Theoretically, we prove the existence of the minimizer for the proposed energy functional. Based on the scalar auxiliary variable approach, we develop an efficient numerical scheme to solve the proposed model. Further, we use a time step adaptive strategy to accelerate the convergence. Experimental results validate the effectiveness of the proposed algorithm for image inpainting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. IEEE Int. Conf. Comput. Vis. 2, 1033–1038 (1999)

    Google Scholar 

  2. Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. IEEE Trans. Image Process. 13(9), 1200–1212 (2004)

    Google Scholar 

  3. Guillemot, C., Le Meur, O.: Image inpainting: overview and recent advances. IEEE Signal Process. Mag. 31(1), 127–144 (2014)

    Google Scholar 

  4. Zhang, J., Zhao, D., Gao, W.: Group-based sparse representation for image restoration. IEEE Trans. Image Process. 23(8), 3336–3351 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Elad, M., Starck, J.L., Querre, P., Donoho, D.L.: Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA). Appl. Comput. Harmon. Anal. 19(3), 340–358 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: IEEE conference on computer vision and pattern recognition pp 2536–2544 (2016)

  7. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Adv. Neural. Inf. Process. Syst. 27, 2672–2680 (2014)

    Google Scholar 

  8. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graphics (ToG) 36(4), 1–14 (2017)

    Google Scholar 

  9. Yeh, R.A., Chen, C., Yian Lim, T., Schwing, A.G., Hasegawa-Johnson, M., Do, M.N.: Semantic image inpainting with deep generative models. In: IEEE conference on computer vision and pattern recognition, pp 5485–5493 (2017)

  10. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpaintin. In: The 27th annual conference on computer graphics and interactive techniques, pp 417–424 (2000)

  11. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    MathSciNet  MATH  Google Scholar 

  12. Mumford, D.B., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 577–685 (1989)

  13. Shen, J., Chan, T.F.: Mathematical models for local nontexture inpaintings. SIAM J. Appl. Math. 62(3), 1019–1043 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Esedoglu, S., Shen, J.: Digital inpainting based on the Mumford–Shah–Euler image model. Eur. J. Appl. Math. 13(4), 353–370 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Chan, T.F., Shen, J.: Nontexture inpainting by curvature-driven diffusions. J. Visual Comm. Image Rep. 12(4), 436–449 (2001)

    Google Scholar 

  16. Mumford, D.: Algebraic Geometry and its Applications, pp. 491–506. Springer, New York (1994)

    MATH  Google Scholar 

  17. Chan, T.F., Kang, S.H., Shen, J.: Euler’s elastica and curvature-based inpainting. SIAM J. Appl. Math. 63(2), 564–592 (2002)

    MathSciNet  MATH  Google Scholar 

  18. De Giorgi, E.: Frontiere Orientate di Misura Minima. Lecture Notes, Sem. Mat. Scuola Norm. Sup. Pisa. 61 (1960)

  19. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    MATH  Google Scholar 

  20. Bertozzi, A.L., Esedoglu, S., Gillette, A.: inpainting of binary images using the Cahn-Hilliard equation. IEEE Trans. Image Process. 16(1), 285–291 (2006)

  21. Bertozzi, A., Esedoglu, S., Gillette, A.: Analysis of a two-scale Cahn-Hilliard model for binary image inpainting. Multiscale Model. Simul. 6(3), 913–936 (2007)

  22. Bosch, J., Kay, D., Stoll, M., Wathen, A.J.: Fast solvers for Cahn–Hilliard inpainting. SIAM J. Imag. Sci. 7(1), 67–97 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Bertozzi, A., Schönlieb, C.B.: Unconditionally stable schemes for higher order inpainting. Commun. Math. Sci. 9(2), 413–457 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Burger, M., He, L., Schönlieb, C.B.: Cahn–Hilliard inpainting and a generalization for gray value images. SIAM J. Imag. Sci. 2(4), 1129–1167 (2009)

    MATH  Google Scholar 

  25. Garcke, H., Lam, K.F., Styles, V.: Cahn–Hilliard inpainting with the double obstacle potential. SIAM J. Imaging Sci. 11(3), 2064–2089 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.: A linear energy stable scheme for a thinfilm model without slope selection. J. Sci. Comput. 52, 546–562 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Chen, W., Wang, C., Wang, X., Wise, S.M.: A linear iteration algorithm for a second-order energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 59(3), 574–601 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50(1), 105–125 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Zhu, J., Chen, L.Q., Shen, J., Tikare, V.: Coarsening kinetics from a variable-mobility Cahn–Hilliard equation: application of a semi-implicit Fourier spectral method. Phys. Rev. E 60(4), 3564–3572 (1999)

    Google Scholar 

  30. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Syst. 28(4), 1669–1691 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Guillén-González, F., Tierra, G.: On linear schemes for a Cahn–Hilliard diffuse interface model. J. Comput. Phys. 234, 140–171 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Zhao, J., Wang, Q., Yang, X.: Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Int. J. Numer. Methods Eng. 110(3), 279–300 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Gong, Y., Zhao, J., Wang, Q.: Arbitrarily high-order unconditionally energy stable schemes for thermodynamically consistent gradient flow models. SIAM J. Sci. Comput. 42(1), B135–B156 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Cheng, Q., Shen, J., Yang, X.: Highly efficient and accurate numerical schemes for the epitaxial thin film growth models by using the SAV approach. J. Sci. Comput. 78(3), 1467–1487 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Cao, D., Shen, J., Xu, J.: Computing interface with quasiperiodicity. J. Comput. Phys. 424, 109863 (2021)

    MathSciNet  MATH  Google Scholar 

  38. Chen, J., He, Z., Sun, S., Guo, S., Chen, Z.: Efficient linear schemes with unconditional energy stability for the phase field model of solid-state dewetting problems. J. Comput. Math. 3, 452–468 (2020)

    MathSciNet  MATH  Google Scholar 

  39. Antoine, X., Shen, J., Tang, Q.: Scalar auxiliary variable/Lagrange multiplier based pseudospectral schemes for the dynamics of nonlinear Schrödinger/Gross-Pitaevskii equations. J. Comput. Phys. 437, 110328 (2021)

    MATH  Google Scholar 

  40. Belhachmi, Z., Kallel, M., Moakher, M., Theljani, A.: Weighted harmonic and complex Ginzburg–Landau equations for gray value image inpainting. Partial Differ. Equ. Methods Regular. Tech. Image Inpaint. 1, 1–57 (2016)

    MATH  Google Scholar 

  41. Theljani, A., Belhachmi, Z., Moakher, M.: High-order anisotropic diffusion operators in spaces of variable exponents and application to image inpainting and restoration problems. Nonlinear Anal. Real World Appl. 47, 251–271 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Van der Waals, J.D.: The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. J. Stat. Phys. 20(2), 200–244 (1979)

    Google Scholar 

  43. Osher, S., Solé, A., Vese, L.: Image decomposition and restoration using total variation minimization and the \(H^{-1}\) norm. Multiscale Model. Simul. 1(3), 349–370 (2003)

    MathSciNet  MATH  Google Scholar 

  44. Schönlieb, C.B.: Total variation minimization with an \(H^{-1}\) constraint. CRM Series 9, 201–232 (2009)

    MathSciNet  MATH  Google Scholar 

  45. Theljani, A., Belhachmi, Z., Kallel, M., Moakher, M.: A multiscale fourth-order model for the image inpainting and low-dimensional sets recovery. Math. Methods Appl. Sci. 40(10), 3637–3650 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, vol. 22. American Mathematical Soc, Washington (2001)

    MATH  Google Scholar 

  47. Elliott, C.M., Stuart, A.M.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30(6), 1622–1663 (1993)

    MathSciNet  MATH  Google Scholar 

  48. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. MRS Online Proc. Library (OPL) 529, 39 (1998)

    MathSciNet  Google Scholar 

  49. Zhuang, Q., Shen, J.: Efficient SAV approach for imaginary time gradient flows with applications to one-and multi-component Bose-Einstein condensates. J. Comput. Phys. 396, 72–88 (2019)

    MathSciNet  MATH  Google Scholar 

  50. Zhang, Z., Qiao, Z.: An adaptive time-stepping strategy for the Cahn–Hilliard equation. Commun. Comput. Phys. 11, 1261–1278 (2012)

    MathSciNet  MATH  Google Scholar 

  51. Lou, F., Tang, T., Xie, H.: Parameter-free time adaptivity based on energy evolution for the Cahn–Hilliard equation. Commun. Comput. Phys. 19, 1542–1563 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Fundamental Research Fund for the Central Universities (HIT. NSRIF202202), the National Natural Science Foundation of China (12171123, 11971131, 11871133, 11671111, U1637208, 61873071, 51476047). The Natural Science Foundation of Heilongjiang Province of China (LH2021A011) and China Postdoctoral Science Foundation (2020M670893). China Society of Industrial and Applied Mathematics Young Women Applied Mathematics Support Research Project.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjuan Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Sun, J., Shen, J. et al. A Ginzburg-Landau-\({H}^{-1}\) Model and Its SAV Algorithm for Image Inpainting. J Sci Comput 96, 40 (2023). https://doi.org/10.1007/s10915-023-02252-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02252-z

Keywords

Mathematics Subject Classification

Navigation