Skip to main content
Log in

Second Order, Unconditionally Stable, Linear Ensemble Algorithms for the Magnetohydrodynamics Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose two unconditionally stable, linear ensemble algorithms with pre-computable shared coefficient matrices across different realizations for the magnetohydrodynamics equations. The viscous terms are treated by a standard perturbative discretization. The nonlinear terms are discretized fully explicitly within the framework of the generalized positive auxiliary variable approach (GPAV). Artificial viscosity stabilization that modifies the kinetic energy is introduced to improve accuracy of the GPAV ensemble methods. Numerical results are presented to demonstrate the accuracy and robustness of the ensemble algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Mohebujjaman, M., Rebholz, L.G.: An efficient algorithm for computation of MHD flow ensembles. Comput. Methods Appl. Math. 17(1), 121–137 (2017). https://doi.org/10.1515/cmam-2016-0033

    Article  MATH  Google Scholar 

  2. Wei, D., Zhang, Z.: Global well-posedness of the MHD equations in a homogeneous magnetic field. Anal. PDE 10(6), 1361–1406 (2017). https://doi.org/10.2140/apde.2017.10.1361

    Article  MATH  Google Scholar 

  3. Trenchea, C.: Unconditional stability of a partitioned IMEX method for magnetohydrodynamic flows. Appl. Math. Lett. 27, 97–100 (2014). https://doi.org/10.1016/j.aml.2013.06.017

    Article  MATH  Google Scholar 

  4. Mohebujjaman, M., Wang, H., Rebholz, L.G., Mahbub, M.A.A.: An efficient algorithm for simulating ensembles of parameterized MHD flow problems (2021). arXiv:2108.05110

  5. Jiang, N., Layton, W.: An algorithm for fast calculation of flow ensembles. Int. J. Uncertain. Quantif. 4(4), 273–301 (2014). https://doi.org/10.1615/Int.J.UncertaintyQuantification.2014007691

    Article  MATH  Google Scholar 

  6. Jiang, N., Layton, W.: Numerical analysis of two ensemble eddy viscosity numerical regularizations of fluid motion. Numer. Methods Partial Differ. Equ. 31(3), 630–651 (2015). https://doi.org/10.1002/num.21908

    Article  MATH  Google Scholar 

  7. Jiang, N.: A higher order ensemble simulation algorithm for fluid flows. J. Sci. Comput. 64(1), 264–288 (2015). https://doi.org/10.1007/s10915-014-9932-z

    Article  MATH  Google Scholar 

  8. Jiang, N.: A second-order ensemble method based on a blended backward differentiation formula timestepping scheme for time-dependent Navier–Stokes equations. Numer. Methods Partial Differ. Equ. 33(1), 34–61 (2017). https://doi.org/10.1002/num.22070

    Article  MATH  Google Scholar 

  9. Gunzburger, M., Jiang, N., Schneier, M.: An ensemble-proper orthogonal decomposition method for the nonstationary Navier–Stokes equations. SIAM J. Numer. Anal. 55(1), 286–304 (2017). https://doi.org/10.1137/16M1056444

    Article  MATH  Google Scholar 

  10. Fiordilino, J.A.: A second order ensemble time stepping algorithm for natural convection. SIAM J. Numer. Anal. 56(2), 816–837 (2018). https://doi.org/10.1137/17M1135104

    Article  MATH  Google Scholar 

  11. Jiang, N.: A pressure-correction ensemble scheme for computing evolutionary Boussinesq equations. J. Sci. Comput. 80(1), 315–350 (2019). https://doi.org/10.1007/s10915-019-00939-w

    Article  MATH  Google Scholar 

  12. Gunzburger, M., Jiang, N., Wang, Z.: An efficient algorithm for simulating ensembles of parameterized flow problems. IMA J. Numer. Anal. 39(3), 1180–1205 (2019). https://doi.org/10.1093/imanum/dry029

    Article  MATH  Google Scholar 

  13. Jiang, N., Qiu, C.: An efficient ensemble algorithm for numerical approximation of stochastic Stokes-Darcy equations. Comput. Methods Appl. Mech. Eng. 343, 249–275 (2019). https://doi.org/10.1016/j.cma.2018.08.020

    Article  MATH  Google Scholar 

  14. Jiang, N., Li, Y., Yang, H.: An artificial compressibility Crank–Nicolson leap-frog method for the Stokes-Darcy model and application in ensemble simulations. SIAM J. Numer. Anal. 59(1), 401–428 (2021). https://doi.org/10.1137/20M1321644

    Article  MATH  Google Scholar 

  15. Jiang, N., Schneier, M.: An efficient, partitioned ensemble algorithm for simulating ensembles of evolutionary MHD flows at low magnetic Reynolds number. Numer. Methods Partial Differ. Equ. 34(6), 2129–2152 (2018). https://doi.org/10.1002/num.22281

    Article  MATH  Google Scholar 

  16. Carter, J., Jiang, N.: Numerical analysis of a second order ensemble method for evolutionary magnetohydrodynamics equations at small magnetic Reynolds number. Numer. Methods Partial Differ. Equ. (2022). https://doi.org/10.1002/num.22843

    Article  Google Scholar 

  17. Elsasser, W.M.: The hydromagnetic equations. Phys. Rev. 79, 183–183 (1950). https://doi.org/10.1103/PhysRev.79.183

    Article  MATH  Google Scholar 

  18. Guillén-González, F., Tierra, G.: On linear schemes for a Cahn–Hilliard diffuse interface model. J. Comput. Phys. 234, 140–171 (2013). https://doi.org/10.1016/j.jcp.2012.09.020

    Article  MATH  Google Scholar 

  19. Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017). https://doi.org/10.1016/j.jcp.2016.12.025

    Article  MATH  Google Scholar 

  20. Yang, X., Ju, L.: Linear and unconditionally energy stable schemes for the binary fluid-surfactant phase field model. Comput. Methods Appl. Mech. Eng. 318, 1005–1029 (2017). https://doi.org/10.1016/j.cma.2017.02.011

    Article  MATH  Google Scholar 

  21. Gong, Y., Zhao, J., Wang, Q.: Arbitrarily high-order linear energy stable schemes for gradient flow models. J. Comput. Phys. 419, 109610–20 (2020). https://doi.org/10.1016/j.jcp.2020.109610

    Article  MATH  Google Scholar 

  22. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MATH  Google Scholar 

  23. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019). https://doi.org/10.1137/17M1150153

    Article  MATH  Google Scholar 

  24. Yang, Z., Dong, S.: An unconditionally energy-stable scheme based on an implicit auxiliary energy variable for incompressible two-phase flows with different densities involving only precomputable coefficient matrices. J. Comput. Phys. 393, 229–257 (2019). https://doi.org/10.1016/j.jcp.2019.05.018

    Article  MATH  Google Scholar 

  25. Yang, Z., Dong, S.: A roadmap for discretely energy-stable schemes for dissipative systems based on a generalized auxiliary variable with guaranteed positivity. J. Comput. Phys. 404, 109121–46 (2020). https://doi.org/10.1016/j.jcp.2019.109121

    Article  MATH  Google Scholar 

  26. Yang, X.: A novel fully-decoupled, second-order and energy stable numerical scheme of the conserved Allen–Cahn type flow-coupled binary surfactant model. Comput. Methods Appl. Mech. Eng. 373, 113502 (2021). https://doi.org/10.1016/j.cma.2020.113502

    Article  MATH  Google Scholar 

  27. Li, S.J. Xiaoli, Liu, Z.: New sav-pressure correction methods for the Navier–Stokes equations: stability and error analysis. Math. Comput. https://doi.org/10.1090/mcom/3651 (2021)

  28. Jiang, N., Yang, H.: SAV decoupled ensemble algorithms for fast computation of Stokes–Darcy flow ensembles. Comput. Methods Appl. Mech. Eng. 387, 34–114150 (2021). https://doi.org/10.1016/j.cma.2021.114150

    Article  MATH  Google Scholar 

  29. Labovsky, A., Layton, W.J., Manica, C.C., Neda, M., Rebholz, L.G.: The stabilized extrapolated trapezoidal finite-element method for the Navier–Stokes equations. Comput. Methods Appl. Mech. Engrg. 198(9–12), 958–974 (2009). https://doi.org/10.1016/j.cma.2008.11.004

    Article  MATH  Google Scholar 

  30. Li, X., Wang, W., Shen, J.: Stability and error analysis of IMEX SAV schemes for the magneto-hydrodynamic equations. SIAM J. Numer. Anal. 60(3), 1026–1054 (2022). https://doi.org/10.1137/21M1430376

    Article  MATH  Google Scholar 

  31. Zhang, C., Ouyang, J., Wang, C., Wise, S.M.: Numerical comparison of modified-energy stable SAV-type schemes and classical BDF methods on benchmark problems for the functionalized Cahn–Hilliard equation. J. Comput. Phys. 423, 35–109772 (2020). https://doi.org/10.1016/j.jcp.2020.109772

    Article  MATH  Google Scholar 

  32. Jiang, M., Zhang, Z., Zhao, J.: Improving the accuracy and consistency of the scalar auxiliary variable (SAV) method with relaxation. J. Comput. Phys. 456, 110954 (2022). https://doi.org/10.1016/j.jcp.2022.110954

    Article  MATH  Google Scholar 

  33. Foias, C., Holm, D.D., Titi, E.S.: The Navier–Stokes-alpha model of fluid turbulence. vol. 152/153, pp. 505–519 (2001). https://doi.org/10.1016/S0167-2789(01)00191-9. Advances in nonlinear mathematics and science. https://doi-org.libproxy.mst.edu/10.1016/S0167-2789(01)00191-9

  34. Chen, S., Holm, D.D., Margolin, L.G., Zhang, R.: Direct numerical simulations of the Navier-Stokes alpha model. 133, 66–83 (1999) Predictability: quantifying uncertainty in models of complex phenomena (Los Alamos, NM, 1998). https://doi.org/10.1016/S0167-2789(99)00099-8

  35. Wang, C., Wang, J., Xia, Z., Xu, L.: Optimal error estimates of a Crank–Nicolson finite element projection method for magnetohydrodynamic equations. ESAIM Math. Model. Numer. Anal. 56(3), 767–789 (2022). https://doi.org/10.1051/m2an/2022020

    Article  MATH  Google Scholar 

  36. Li, B., Wang, J., Xu, L.: A convergent linearized Lagrange finite element method for the magneto-hydrodynamic equations in two-dimensional nonsmooth and nonconvex domains. SIAM J. Numer. Anal. 58(1), 430–459 (2020). https://doi.org/10.1137/18M1205649

    Article  MATH  Google Scholar 

  37. Li, B., Ma, S., Ueda, Y.: Analysis of fully discrete finite element methods for 2D Navier–Stokes equations with critical initial data. ESAIM Math. Model. Numer. Anal. 56(6), 2105–2139 (2022). https://doi.org/10.1051/m2an/2022073

    Article  MATH  Google Scholar 

  38. Li, B., Ma, S., Wang, N.: Second-order convergence of the linearly extrapolated Crank–Nicolson method for the Navier–Stokes equations with \(H^1\) initial data. J. Sci. Comput. 88(3), 20–70 (2021). https://doi.org/10.1007/s10915-021-01588-8

    Article  MATH  Google Scholar 

  39. Gunzburger, M.D.: Finite element methods for viscous incompressible flows. Computer Science and Scientific Computing. Academic Press, San Diego (1989). https://doi.org/10.1016/B978-0-12-307350-1.50002-8. https://www.sciencedirect.com/science/article/pii/B9780123073501500028

  40. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. Springer (2007). https://books.google.com/books?id=ci4c_R0WKYYC

  41. Kraichnan, R.H.: Inertial ranges in two-dimensional turbulence. Phys. Fluids 10(7), 1417–1423 (1967). https://doi.org/10.1063/1.1762301

    Article  Google Scholar 

  42. Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M., Wells, G.: The fenics project version 1.5 3 (2015). https://doi.org/10.11588/ans.2015.100.20553

  43. Zhang, G., He, X., Yang, X.: Fully decoupled, linear and unconditionally energy stable time discretization scheme for solving the magneto-hydrodynamic equations. J. Comput. Appl. Math. 369, 112636 (2019). https://doi.org/10.1016/j.cam.2019.112636

    Article  MATH  Google Scholar 

Download references

Acknowledgements

J. Carter was partially supported by the US National Science Foundation grant DMS-1720001 and DMS-1912715. D. Han was supported by the US National Science Foundation Grant DMS-1912715. N. Jiang was partially supported by the US National Science Foundation Grants DMS-1720001 and DMS-2120413. The authors thank Dr. Suchuan Dong for helpful discussions.

Funding

US National Science Foundation grant DMS-1720001, DMS-1912715, DMS-2120413.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daozhi Han.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carter, J., Han, D. & Jiang, N. Second Order, Unconditionally Stable, Linear Ensemble Algorithms for the Magnetohydrodynamics Equations. J Sci Comput 94, 41 (2023). https://doi.org/10.1007/s10915-022-02091-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02091-4

Keywords

Mathematics Subject Classification

Navigation