Skip to main content

Advertisement

Log in

Pointwise a Posteriori Error Analysis of a Finite Element Method for the Signorini Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this article, we develop a posteriori error control of conforming finite element method in maximum norm for the one-body contact problem. The reliability and the efficiency of the error estimator is discussed. The upper and lower barriers of the exact solution \({\varvec{u}}\) have been constructed by rectifying the discrete solution \({\varvec{u}}_{{\varvec{h}}}\) properly and they are crucially used in obtaining the reliability estimates. Other key ingredients of the analysis are the sign property of the quasi-discrete contact force density as well as bounds on the Green’s matrix of the divergence type operator. Numerical experiments are presented for a two dimensional contact problems that exhibit reliability and efficiency of the error estimator confirming theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Walloth, M: Adaptive numerical simulation of contact problems: resolving local effects at the contact boundary in space and time. Rheinische Friedrich-Wilhelms-Universitat Bonn (2012) (PhD thesis)

  2. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis, vol. 37. John Wiley & Sons, New York (2011)

    MATH  Google Scholar 

  3. Verfürth, R.: A review of a posteriori error estimation. Wiley & Teubner. Citeseer, In and Adaptive Mesh-Refinement Techniques (1996)

  4. Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41(6), 2374–2399 (2003)

    Article  MathSciNet  Google Scholar 

  5. Nochetto, R.H.: Pointwise a posteriori error estimates for elliptic problems on highly graded meshes. Math. Comput. 64(209), 1–22 (1995)

    Article  MathSciNet  Google Scholar 

  6. Dari, E., Durán, R.G., Padra, C.: Maximum norm error estimators for three-dimensional elliptic problems. SIAM J. Numer. Anal. 37(2), 683–700 (1999)

    Article  MathSciNet  Google Scholar 

  7. Demlow, A., Georgoulis, Emmanuil H.: Pointwise a posteriori error control for discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 50(5), 2159–2181 (2012)

    Article  MathSciNet  Google Scholar 

  8. Nochetto, R.H., Paolini, M., Verdi, C.: An adaptive finite element method for two-phase Stefan problems in two space dimensions. II: implementation and numerical experiments. SIAM J. Sci. Stat. Comput. 12(5), 1207–1244 (1991)

    Article  MathSciNet  Google Scholar 

  9. Glowinski, R.: Numerical methods for nonlinear variational problems. Tata Institute of Fundamental Research (1980)

  10. Kikuchi, N., Oden J.T.: Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM (1988)

  11. Veeser, A.: Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J. Numer. Anal. 39(1), 146–167 (2001)

    Article  MathSciNet  Google Scholar 

  12. Gudi, T., Porwal, K.: A posteriori error control of discontinuous Galerkin methods for elliptic obstacle problems. Math. Comput. 83(286), 579–602 (2014)

    Article  MathSciNet  Google Scholar 

  13. Banz, L., Stephan, E.P.: A posteriori error estimates of HP-adaptive IPDG-FEM for elliptic obstacle problems. Appl. Numer. Math. 76, 76–92 (2014)

    Article  MathSciNet  Google Scholar 

  14. Banz, L., Schröder, A.: Biorthogonal basis functions in HP-adaptive FEM for elliptic obstacle problems. Comput. Math. Appl. 70(8), 1721–1742 (2015)

    Article  MathSciNet  Google Scholar 

  15. Wang, F., Han, W., Eichholz, J., Cheng, X.: A posteriori error estimates for discontinuous Galerkin methods of obstacle problems. Nonlinear Anal. Real World Appl. 22, 664–679 (2015)

    Article  MathSciNet  Google Scholar 

  16. Gudi, T., Porwal, K.: A posteriori error estimates of discontinuous Galerkin methods for the Signorini problem. J. Comput. Appl. Math. 292, 257–278 (2016)

    Article  MathSciNet  Google Scholar 

  17. Weiss, A., Wohlmuth, B.: A posteriori error estimator and error control for contact problems. Math. Comput. 78(267), 1237–1267 (2009)

    Article  MathSciNet  Google Scholar 

  18. Krause, R., Veeser, A., Walloth, M.: An efficient and reliable residual-type a posteriori error estimator for the Signorini problem. Numerische Mathematik 130(1), 151–197 (2015)

    Article  MathSciNet  Google Scholar 

  19. Walloth, M.: A reliable, efficient and localized error estimator for a discontinuous Galerkin method for the Signorini problem. Appl. Numer. Math. 135, 276–296 (2019)

    Article  MathSciNet  Google Scholar 

  20. Baiocchi, C.: Estimations d’erreur dans l pour les inéquations à obstacle. In: Mathematical Aspects of Finite Element Methods, pp. 27–34. Springer (1977)

  21. Nochetto, R.H., Siebert, K.G., Veeser, A.: Pointwise a posteriori error control for elliptic obstacle problems. Numerische Mathematik 95(1), 163–195 (2003)

    Article  MathSciNet  Google Scholar 

  22. Nochetto, R.H., Siebert, K.G., Veeser, A.: Fully localized a posteriori error estimators and barrier sets for contact problems. SIAM J. Numer. Anal. 42(5), 2118–2135 (2005)

    Article  MathSciNet  Google Scholar 

  23. Ciarlet, P.G.: The finite element method for elliptic problems. SIAM (2002)

  24. Fierro, F., Veeser, A.: A posteriori error estimators for regularized total variation of characteristic functions. SIAM J. Numer. Anal. 41(6), 2032–2055 (2003)

    Article  MathSciNet  Google Scholar 

  25. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer Science & Business Media, Cham (2007)

    Google Scholar 

  26. Braess, D.: A posteriori error estimators for obstacle problems-another look. Numerische Mathematik 101(3), 415–421 (2005)

    Article  MathSciNet  Google Scholar 

  27. Moon, Kyoung-Sook., Nochetto, Ricardo H., Von Petersdorff, Tobias, Zhang, Chen-song: A posteriori error analysis for parabolic variational inequalities. ESAIM Math. Modell. Numer. Anal. 41(3), 485–511 (2007)

    Article  MathSciNet  Google Scholar 

  28. Kesavan, S.: Topics in Functional Analysis and Applications. John Wiley & Sons, New York (1989)

    MATH  Google Scholar 

  29. Taylor, J.L., Kim, S., Brown, R.M.: The Green function for elliptic systems in two dimensions. Commun. Part. Differ. Equ. 38(9), 1574–1600 (2013)

    Article  MathSciNet  Google Scholar 

  30. Dolzmann, G., Müller, S.: Estimates for Green’s matrices of elliptic systems by Lp theory. manuscripta mathematica 88(1), 261–273 (1995)

  31. Hofmann, S., Kim, S.: The Green function estimates for strongly elliptic systems of second order. manuscripta mathematica 124(2), 139–172 (2007)

    Article  MathSciNet  Google Scholar 

  32. Dong, H., Kim, S.: Green’s matrices of second order elliptic systems with measurable coefficients in two dimensional domains. Trans. Am. Math. Soc. 361(6), 3303–3323 (2009)

    Article  MathSciNet  Google Scholar 

  33. Kashiwabara, T., Kemmochi, T.: Pointwise error estimates of linear finite element method for Neumann boundary value problems in a smooth domain. Numerische Mathematik 144(3), 553–584 (2020)

    Article  MathSciNet  Google Scholar 

  34. Luigi, A.: Lecture notes on elliptic partial differential equations. Unpublished lecture notes. Scuola Normale Superiore di Pisa 30 (2015)

  35. Nochetto, R.H., Schmidt, A., Siebert, K.G., Veeser, A.: Pointwise a posteriori error estimates for monotone semi-linear equations. Numerische Mathematik 104(4), 515–538 (2006)

    Article  MathSciNet  Google Scholar 

  36. Hüeber, S., Wohlmuth, B.I.: A primal-dual active set strategy for non-linear multibody contact problems. Comput. Methods Appl. Mech. Eng. 194(27–29), 3147–3166 (2005)

    Article  MathSciNet  Google Scholar 

  37. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J Numer. Anal. 33(3), 1106–1124 (1996)

Download references

Funding

RK work is supported by the Council for Scientific and Industrial Research (CSIR)

and KP work is supported by SERB MATRICS grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamana Porwal.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khandelwal, R., Porwal, K. Pointwise a Posteriori Error Analysis of a Finite Element Method for the Signorini Problem. J Sci Comput 91, 42 (2022). https://doi.org/10.1007/s10915-022-01811-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01811-0

Keywords

Navigation