Skip to main content
Log in

Tensor Arnoldi–Tikhonov and GMRES-Type Methods for Ill-Posed Problems with a t-Product Structure

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper describes solution methods for linear discrete ill-posed problems defined by third order tensors and the t-product formalism introduced in (Linear Algebra Appl 435:641–658, 2011). A t-product Arnoldi (t-Arnoldi) process is defined and applied to reduce a large-scale Tikhonov regularization problem for third order tensors to a problem of small size. The data may be represented by a laterally oriented matrix or a third order tensor, and the regularization operator is a third order tensor. The discrepancy principle is used to determine the regularization parameter and the number of steps of the t-Arnoldi process. Numerical examples compare results for several solution methods, and illustrate the potential superiority of solution methods that tensorize over solution methods that matricize linear discrete ill-posed problems for third order tensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://www.github.com/canyilu/tproduct.

  2. https://github.com/jnagy1/IRtools/blob/master/Extra/test_data/HSTgray.jpg.

  3. http://www.hlevkin.com/TestImages.

References

  1. Beik, F.P.A., Jbilou, K., Najafi-Kalyani, M., Reichel, L.: Golub–Kahan bidiagonalization for ill-conditioned tensor equations with applications. Numer. Algorithms 84, 1535–1563 (2020)

    Article  MathSciNet  Google Scholar 

  2. Beik, F.P.A., Najafi-Kalyani, M., Reichel, L.: Iterative Tikhonov regularization of tensor equations based on the Arnoldi process and some of its generalizations. Appl. Numer. Math. 151, 425–447 (2020)

    Article  MathSciNet  Google Scholar 

  3. Buccini, A., Pasha, M., Reichel, L.: Generalized singular value decomposition with iterated Tikhonov regularization. J. Comput. Appl. Math. 373, 112276 (2020)

    Article  MathSciNet  Google Scholar 

  4. Calvetti, D., Lewis, B., Reichel, L.: On the regularizing properties of the GMRES method. Numer. Math. 91, 605–625 (2002)

    Article  MathSciNet  Google Scholar 

  5. Calvetti, D., Morigi, S., Reichel, L., Sgallari, F.: Tikhonov regularization and the L-curve for large, discrete ill-posed problems. J. Comput. Appl. Math. 123, 423–446 (2000)

    Article  MathSciNet  Google Scholar 

  6. Calvetti, D., Reichel, L.: Tikhonov regularization of large linear problems. BIT Numer. Math. 43, 263–283 (2003)

    Article  MathSciNet  Google Scholar 

  7. Donatelli, M., Martin, D., Reichel, L.: Arnoldi methods for image deblurring with anti-reflective boundary conditions. Appl. Math. Comput. 253, 135–150 (2015)

    MathSciNet  MATH  Google Scholar 

  8. El Guide, M., El Ichi, A., Jbilou, K., Beik, F.P.: Tensor GMRES and Golub–Kahan bidiagonalization methods via the Einstein product with applications to image and video processing. https://arxiv.org/pdf/2005.07458.pdf

  9. El Ichi, M., El Guide, A., Jbilou, K.: Discrete cosine transform LSQR and GMRES methods for multidimensional ill-posed problems. https://arxiv.org/pdf/2103.11847.pdf (2021)

  10. El Guide, M., El Ichi, A., Jbilou, K., Sadaka, R.: Tensor Krylov subspace methods via the T-product for color image processing. https://arxiv.org/pdf/2006.07133.pdf (2020)

  11. Ely, G., Aeron, S., Hao, N., Kilmer, M.E.: 5d and 4d pre-stack seismic data completion using tensor nuclear norm (TNN). In: SEG International Exposition and Eighty-Third Annual Meeting at Houston, TX (2013)

  12. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)

    Book  Google Scholar 

  13. Fenu, C., Reichel, L., Rodriguez, G.: GCV for Tikhonov regularization via global Golub–Kahan decomposition. Numer. Linear Algebra Appl. 23, 467–484 (2016)

    Article  MathSciNet  Google Scholar 

  14. Gazzola, S., Novati, P., Russo, M.R.: On Krylov projection methods and Tikhonov regularization. Electron. Trans. Numer. Anal. 44, 83–123 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Golub, G.H., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 215–223 (1979)

    Article  MathSciNet  Google Scholar 

  16. Hansen, P.C.: Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34, 561–580 (1992)

    Article  MathSciNet  Google Scholar 

  17. Hansen, P.C.: Regularization tools version 4.0 for MATLAB 7.3. Numer. Algorithms 46, 189–194 (2007)

    Article  MathSciNet  Google Scholar 

  18. Hao, N., Kilmer, M.E., Braman, K., Hoover, R.C.: Facial recognition using tensor-tensor decompositions. SIAM J. Imaging Sci. 6, 437–463 (2013)

    Article  MathSciNet  Google Scholar 

  19. Huang, G., Reichel, L., Yin, F.: On the choice of subspace for large-scale Tikhonov regularization problems in general form. Numer. Algorithms 81, 33–55 (2019)

    Article  MathSciNet  Google Scholar 

  20. Kernfeld, E., Kilmer, M., Aeron, S.: Tensor-tensor products with invertible linear transforms. Linear Algebra Appl. 485, 545–570 (2015)

    Article  MathSciNet  Google Scholar 

  21. Kilmer, M., Braman, K., Hao, N.: Third order tensors as operators on matrices: a theoretical and computational framework. Technical Report, Department of Computer Science, Tufts University (2011)

  22. Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34, 148–172 (2013)

    Article  MathSciNet  Google Scholar 

  23. Kilmer, M.E., Martin, C.D.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435, 641–658 (2011)

    Article  MathSciNet  Google Scholar 

  24. Kindermann, S.: Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems. Electron. Trans. Numer. Anal. 38, 233–257 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Kindermann, S., Raik, K.: A simplified L-curve method as error estimator. Electron. Trans. Numer. Anal. 53, 217–238 (2020)

    Article  MathSciNet  Google Scholar 

  26. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  27. Lewis, B., Reichel, L.: Arnoldi–Tikhonov regularization methods. J. Comput. Appl. Math. 226, 92–102 (2009)

    Article  MathSciNet  Google Scholar 

  28. Lu, C., Feng, J., Chen, Y., Liu, W., Lin, Z., Yan, S.: Tensor robust principal component analysis with a new tensor nuclear norm. IEEE Trans. Pattern Anal. Mach. Intell. 42, 925–938 (2020)

    Article  Google Scholar 

  29. Lund, K.: The tensor t-function: a definition for functions of third-order tensors. arXiv preprint. arXiv:1806.07261 (2018)

  30. Martin, C.D., Shafer, R., LaRue, B.: An order-\(p\) tensor factorization with applications in imaging. SIAM J. Sci. Comput. 35, A474–A490 (2013)

    Article  MathSciNet  Google Scholar 

  31. Miao, Y., Qi, L., Wei, Y.: T-Jordan canonical form and T-Drazin inverse based on the T-product. Commun. Appl. Math. Comput. 3, 201–220 (2021)

    Article  MathSciNet  Google Scholar 

  32. Miao, Y., Qi, L., Wei, Y.: Generalized tensor function via the tensor singular value decomposition based on the T-product. Linear Algebra Appl. 590, 258–303 (2020)

    Article  MathSciNet  Google Scholar 

  33. Neubauer, A.: Augmented GMRES-type versus CGNE methods for the solution of linear ill-posed problems. Electron. Trans. Numer. Anal. 51, 412–431 (2019)

    Article  MathSciNet  Google Scholar 

  34. Reichel, L., Shyshkov, A.: A new zero-finder for Tikhonov regularization. BIT Numer. Math. 48, 627–643 (2008)

    Article  MathSciNet  Google Scholar 

  35. Reichel, L., Ugwu, U.O.: The tensor Golub–Kahan–Tikhonov method applied to the solution of ill-posed problems with a t-product structure. Numer. Linear Algebra Appl. 29,(2022). https://doi.org/10.1002/nla.2412

  36. Reichel, L., Rodriguez, G.: Old and new parameter choice rules for discrete ill-posed problems. Numer. Algorithms 63, 65–87 (2013)

    Article  MathSciNet  Google Scholar 

  37. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  Google Scholar 

  38. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual method for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  Google Scholar 

  39. Savas, B., Eldén, L.: Krylov-type methods for tensor computations. Linear Algebra Appl. 438, 891–918 (2013)

    Article  MathSciNet  Google Scholar 

  40. Soltani, S., Kilmer, M.E., Hansen, P.C.: A tensor-based dictionary learning approach to tomographic image reconstruction. BIT Numer. Math. 56, 1425–1454 (2015)

    Article  MathSciNet  Google Scholar 

  41. Trefethen, L.N., Bau, D., III.: Numerical Linear Algebra. SIAM, Philadelphia (1997)

    Book  Google Scholar 

  42. Zhang, Z., Ely, G., Aeron, S., Hao, N., Kilmer, M. E.: Novel methods for multilinear data completion and de-noising based on tensor-SVD. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23–28, 2014, pp. 3842–3849 (2014)

Download references

Acknowledgements

The authors would like to thank the referees for comments that led to improvements of the presentation. Research by LR was supported in part by NSF Grant DMS-1720259.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugochukwu O. Ugwu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reichel, L., Ugwu, U.O. Tensor Arnoldi–Tikhonov and GMRES-Type Methods for Ill-Posed Problems with a t-Product Structure. J Sci Comput 90, 59 (2022). https://doi.org/10.1007/s10915-021-01719-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01719-1

Keywords

Navigation