Skip to main content
Log in

Free-Boundary Conformal Parameterization of Point Clouds

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

With the advancement in 3D scanning technology, there has been a surge of interest in the use of point clouds in science and engineering. To facilitate the computations and analyses of point clouds, prior works have considered parameterizing them onto some simple planar domains with a fixed boundary shape such as a unit circle or a rectangle. However, the geometry of the fixed shape may lead to some undesirable distortion in the parameterization. It is therefore more natural to consider free-boundary conformal parameterizations of point clouds, which minimize the local geometric distortion of the mapping without constraining the overall shape. In this work, we develop a free-boundary conformal parameterization method for disk-type point clouds, which involves a novel approximation scheme of the point cloud Laplacian with accumulated cotangent weights together with a special treatment at the boundary points. With the aid of the free-boundary conformal parameterization, high-quality point cloud meshing can be easily achieved. Furthermore, we show that using the idea of conformal welding in complex analysis, the point cloud conformal parameterization can be computed in a divide-and-conquer manner. Experimental results are presented to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availibility

The data are available from the corresponding author on request.

References

  1. Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation, pp. 1–4 (2011)

  2. Remondino, F.: From point cloud to surface: the modeling and visualization problem. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 34(5), W10 (2003)

    Google Scholar 

  3. Mitra, N.J., Gelfand, N., Pottmann, H., Guibas, L.: Registration of point cloud data from a geometric optimization perspective. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 22–31 (2004)

  4. Schnabel, R., Wahl, R., Klein, R.: Efficient ransac for point-cloud shape detection. Comput. Graph. Forum 26, 214–226 (2007)

    Article  Google Scholar 

  5. Collins, A., Zomorodian, A., Carlsson, G., Guibas, L.J.: A barcode shape descriptor for curve point cloud data. Comput. Graph. 28(6), 881–894 (2004)

    Article  Google Scholar 

  6. Shen, Y., Feng, C., Yang, Y., Tian, D.: Mining point cloud local structures by kernel correlation and graph pooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4548–4557 (2018)

  7. Zhou, Y., Tuzel, O.: Voxelnet: End-to-end learning for point cloud based 3D object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4490–4499 (2018)

  8. Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–779 (2019)

  9. Liu, Y., Fan, B., Xiang, S., Pan, C.: Relation-shape convolutional neural network for point cloud analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8895–8904 (2019)

  10. Zou, G., Hu, J., Gu, X., Hua, J.: Authalic parameterization of general surfaces using Lie advection. IEEE Trans. Vis. Comput. Graph. 17(12), 2005–2014 (2011)

    Article  Google Scholar 

  11. Zhao, X., Su, Z., Gu, X.D., Kaufman, A., Sun, J., Gao, J., Luo, F.: Area-preservation mapping using optimal mass transport. IEEE Trans. Vis. Comput. Graph. 19(12), 2838–2847 (2013)

    Article  Google Scholar 

  12. Su, K., Cui, L., Qian, K., Lei, N., Zhang, J., Zhang, M., Gu, X.D.: Area-preserving mesh parameterization for poly-annulus surfaces based on optimal mass transportation. Comput. Aided Geom. Des. 46, 76–91 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pumarola, A., Sanchez-Riera, J., Choi, G. P. T., Sanfeliu, A., Moreno-Noguer, F.: 3DPeople: Modeling the geometry of dressed humans. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2242–2251 (2019)

  14. Giri, A., Choi, G.P.T., Kumar, L.: Open and closed anatomical surface description via hemispherical area-preserving map. Signal Process. 180, 107867 (2021)

    Article  Google Scholar 

  15. Choi, G.P.T., Rycroft, C.H.: Density-equalizing maps for simply connected open surfaces. SIAM J. Imag. Sci. 11(2), 1134–1178 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Choi, G.P.T., Chiu, B., Rycroft, C.H.: Area-preserving mapping of 3D carotid ultrasound images using density-equalizing reference map. IEEE Trans. Biomed. Eng. 67(9), 1507–1517 (2020)

    Article  Google Scholar 

  17. Yueh, M.-H., Lin, W.-W., Wu, C.-T., Yau, S.-T.: A novel stretch energy minimization algorithm for equiareal parameterizations. J. Sci. Comput. 78(3), 1353–1386 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gu, X., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.-T.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. Imaging 23(8), 949–958 (2004)

    Article  Google Scholar 

  20. Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21(3), 362–371 (2002)

    Article  Google Scholar 

  21. Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations of surface meshes. Comput. Graph. Forum 21, 209–218 (2002)

    Article  Google Scholar 

  22. Sheffer, A., de Sturler, E.: Parameterization of faceted surfaces for meshing using angle-based flattening. Eng. Comput. 17(3), 326–337 (2001)

    Article  MATH  Google Scholar 

  23. Sheffer, A., Lévy, B., Mogilnitsky, M., Bogomyakov, A.: ABF++: fast and robust angle based flattening. ACM Trans. Graph. 24(2), 311–330 (2005)

    Article  Google Scholar 

  24. Luo, F.: Combinatorial Yamabe flow on surfaces. Commun. Contemp. Math. 6(05), 765–780 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kharevych, L., Springborn, B., Schröder, P.: Discrete conformal mappings via circle patterns. ACM Trans. Graph. 25(2), 412–438 (2006)

    Article  Google Scholar 

  26. Mullen, P., Tong, Y., Alliez, P., Desbrun, M.: Spectral conformal parameterization. Comput. Graph. Forum 27, 1487–1494 (2008)

    Article  Google Scholar 

  27. Marshall, D.E., Rohde, S.: Convergence of a variant of the zipper algorithm for conformal mapping. SIAM J. Numer. Anal. 45(6), 2577–2609 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jin, M., Kim, J., Luo, F., Gu, X.: Discrete surface Ricci flow. IEEE Trans. Vis. Comput. Graph. 14(5), 1030–1043 (2008)

    Article  Google Scholar 

  29. Yang, Y.-L., Guo, R., Luo, F., Hu, S.-M., Gu, X.: Generalized discrete Ricci flow. Comput. Graph. Forum 28, 2005–2014 (2009)

    Article  Google Scholar 

  30. Sawhney, R., Crane, K.: Boundary first flattening. ACM Trans. Graph. 37(1), 1–14 (2017)

    Article  Google Scholar 

  31. Yueh, M.-H., Lin, W.-W., Wu, C.-T., Yau, S.-T.: An efficient energy minimization for conformal parameterizations. J. Sci. Comput. 73(1), 203–227 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Advances in multiresolution for geometric modelling, pp. 157–186. Springer, New York (2005)

    Chapter  Google Scholar 

  33. Sheffer, A., Praun, E., Rose, K.: Mesh parameterization methods and their applications. Found. TrendsR Comput. Graph. Vis. 2(2), 105–171 (2006)

    Article  MATH  Google Scholar 

  34. Hormann, K., Lévy, B., Sheffer, A.: Mesh parameterization: Theory and practice. ACM SIGGRAPH 2007 courses (2007)

  35. Choi, P.T., Lam, K.C., Lui, L.M.: FLASH: fast landmark aligned spherical harmonic parameterization for genus-0 closed brain surfaces. SIAM J. Imag. Sci. 8(1), 67–94 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Choi, P.T., Lui, L.M.: Fast disk conformal parameterization of simply-connected open surfaces. J. Sci. Comput. 65(3), 1065–1090 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Choi, G.P.T., Chen, Y., Lui, L.M., Chiu, B.: Conformal mapping of carotid vessel wall and plaque thickness measured from 3D ultrasound images. Med. Biol. Eng. Comput. 55(12), 2183–2195 (2017)

    Article  Google Scholar 

  38. Choi, G.P.-T., Lui, L.M.: A linear formulation for disk conformal parameterization of simply-connected open surfaces. Adv. Comput. Math. 44(1), 87–114 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Choi, G.P.T., Leung-Liu, Y., Gu, X., Lui, L.M.: Parallelizable global conformal parameterization of simply-connected surfaces via partial welding. SIAM J. Imag. Sci. 13(3), 1049–1083 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Choi, G.P.T.: Efficient conformal parameterization of multiply-connected surfaces using quasi-conformal theory. J. Sci. Comput. 87(3), 70 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  41. Choi, G.P.-T., Man, M.H.-Y., Lui, L.M.: Fast spherical quasiconformal parameterization of genus-\(0\) closed surfaces with application to adaptive remeshing. Geom. Imag. Comput. 3(1), 1–29 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Choi, C.P., Gu, X., Lui, L.M.: Subdivision connectivity remeshing via teichmüller extremal map. Inverse Probl. Imag. 11(5), 825–855 (2017)

    Article  MATH  Google Scholar 

  43. Lui, L.M., Lam, K.C., Yau, S.-T., Gu, X.: Teichmüller mapping (T-map) and its applications to landmark matching registration. SIAM J. Imag. Sci. 7(1), 391–426 (2014)

    Article  MATH  Google Scholar 

  44. Yung, C.P., Choi, G.P.T., Chen, K., Lui, L.M.: Efficient feature-based image registration by mapping sparsified surfaces. J. Vis. Commun. Image Repres. 55, 561–571 (2018)

    Article  Google Scholar 

  45. Choi, G.P.T., Mahadevan, L.: Planar morphometrics using Teichmüller maps. Proc. R. Soc. A 474(2217), 20170905 (2018)

    Article  MATH  Google Scholar 

  46. Choi, G.P.T., Chan, H.L., Yong, R., Ranjitkar, S., Brook, A., Townsend, G., Chen, K., Lui, L.M.: Tooth morphometry using quasi-conformal theory. Pattern Recognit. 99, 107064 (2020)

    Article  Google Scholar 

  47. Choi, G.P.T., Qiu, D., Lui, L.M.: Shape analysis via inconsistent surface registration. Proc. R. Soc. A 476(2242), 20200147 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  48. Choi, G.P.T., Dudte, L.H., Mahadevan, L.: Programming shape using kirigami tessellations. Nat. Mater. 18(9), 999–1004 (2019)

    Article  Google Scholar 

  49. Zwicker, M., Gotsman, C.: Meshing point clouds using spherical parameterization. In: Proceedings of the Eurographics Symposium on Point-Based Graphics, pp. 173–180 (2004)

  50. Tewari, G., Gotsman, C., Gortler, S.J.: Meshing genus-1 point clouds using discrete one-forms. Comput. Graph. 30(6), 917–926 (2006)

    Article  Google Scholar 

  51. Zhang, L., Liu, L., Gotsman, C., Huang, H.: Mesh reconstruction by meshless denoising and parameterization. Comput. Graph. 34(3), 198–208 (2010)

    Article  Google Scholar 

  52. Meng, Q., Li, B., Holstein, H., Liu, Y.: Parameterization of point-cloud freeform surfaces using adaptive sequential learning rbfnetworks. Pattern Recognit. 46(8), 2361–2375 (2013)

    Article  Google Scholar 

  53. Choi, G.P.-T., Ho, K.T., Lui, L.M.: Spherical conformal parameterization of genus-0 point clouds for meshing. SIAM J. Imag. Sci. 9(4), 1582–1618 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  54. Meng, T.W., Choi, G.P.-T., Lui, L.M.: TEMPO: Feature-endowed Teichmüller extremal mappings of point clouds. SIAM J. Imag. Sci. 9(4), 1922–1962 (2016)

    Article  MATH  Google Scholar 

  55. Sharp, N., Crane, K.: A Laplacian for nonmanifold triangle meshes. Comput. Graph. Forum 39, 69–80 (2020)

    Article  Google Scholar 

  56. Belkin, M., Niyogi, P.: Towards a theoretical foundation for Laplacian-based manifold methods. J. Comput. Syst. Sci. 74(8), 1289–1308 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  57. Belkin, M., Sun, J., Wang, Y.: Constructing Laplace operator from point clouds in \({\mathbb{R}}^d\). In: Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms, pp. 1031–1040 (2009)

  58. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(1), 389–396 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  59. Liang, J., Lai, R., Wong, T.W., Zhao, H.: Geometric understanding of point clouds using Laplace–Beltrami operator. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 214–221 (2012)

  60. Liang, J., Zhao, H.: Solving partial differential equations on point clouds. SIAM J. Sci. Comput. 35(3), A1461–A1486 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  61. Lai, R., Liang, J., Zhao, H.-K.: A local mesh method for solving PDEs on point clouds. Inverse Probl. Imag. 7(3), 737–755 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  62. Reuter, M., Biasotti, S., Giorgi, D., Patanè, G., Spagnuolo, M.: Discrete Laplace–Beltrami operators for shape analysis and segmentation. Comput. Graph. 33(3), 381–390 (2009)

    Article  Google Scholar 

  63. Clarenz, U., Rumpf, M., Telea, A.: Finite elements on point-based surfaces. In: Proceedings of Symposium on Point-Based Graphics, pp. 201–211 (2004)

  64. Cao, J., Tagliasacchi, A., Olson, M., Zhang, H., Su, Z.: Point cloud skeletons via Laplacian based contraction. In: Proceedings of the 2010 Shape Modeling International Conference, pp. 187–197 (2010)

  65. The Stanford 3D scanning repository. http://graphics.stanford.edu/data/3Dscanrep/

  66. AIM@Shape shape repository. http://visionair.ge.imati.cnr.it/ontologies/shapes/

  67. Meng, T., Lui, L.M.: PCBC: Quasiconformality of point cloud mappings. J. Sci. Comput. 77(1), 597–633 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation under Grant No. DMS-2002103 (to Gary P. T. Choi), and HKRGC GRF under Project ID 2130549 (to Lok Ming Lui).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lok Ming Lui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, G.P.T., Liu, Y. & Lui, L.M. Free-Boundary Conformal Parameterization of Point Clouds. J Sci Comput 90, 14 (2022). https://doi.org/10.1007/s10915-021-01641-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01641-6

Keywords

Mathematics Subject Classification

Navigation