Skip to main content
Log in

Spectral Properties of High-Order Element Types for Implicit Large Eddy Simulation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The use of high-order schemes continues to increase, with current methods becoming more robust and reliable. The resolution of complex turbulent flows using Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) can be computed more efficiently with high-order methods such as the Flux Reconstruction approach. We make use of the implicit form of LES, referred to as ILES, in which the numerical dissipation of the spatial scheme passively filters high-frequency modes, and no subgrid-scale turbulence model is explicitly implemented. Therefore, given the inherent three-dimensional behaviour of turbulent flows, it is important to understand the spectral characteristics of spatial discretizations in three dimensions. The dispersion and dissipative properties of hexahedra, prismatic and tetrahedral element types are compared using Von Neumann analysis. This comparison is performed on a per degree of freedom basis to assess their suitability for ILES in terms of computational cost. We observe dispersion relations that display non-smooth behaviour for tetrahedral and prismatic elements. In addition, the periodicity of the dispersion relations in one dimension is generally not observed in three-dimensional configurations. Semilogarithmic plots of the numerical error are presented. We observe that the amount of numerical dissipation and dispersion added by hexahedral elements is the least, followed by prisms and finally tetrahedra. We validate our analysis comparing results obtained on computational domains with comparable computational cost against DNS data. Hexahedral elements have the best agreement with the reference data, followed by prismatic and finally tetrahedral elements, which is consistent with the spectral analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Statement

Data relating to the results in this manuscript can be downloaded from the publication’s website under a CC-BY- NC-ND 4.0 license.

References

  1. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  2. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TBV Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54(190), 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  4. Wang, Z.J.: Spectral (finite) volume method for conservation laws on unstructured grids. basic formulation: basic formulation. J. Comput. Phys. 178(1), 210–251 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu, Y., Vinokur, M., Wang, Z.J. Discontinuous spectral difference method for conservation laws on unstructured grids. In: Groth, C., Zingg, D.W. (eds.) Computational Fluid Dynamics 2004. Springer, Berlin (2006). https://doi.org/10.1007/3-540-31801-1_63

  6. Huynh, H.T.: A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. In: 18th AIAA Computational Fluid Dynamics Conference, p. 4079. (2007)

  7. Vincent, P.E., Castonguay, P., Jameson, A.: A new class of high-order energy stable flux reconstruction schemes. Journal of Scientific Computing 47(1), 50–72 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zwanenburg, P., Nadarajah, S.: Equivalence between the energy stable flux reconstruction and filtered discontinuous Galerkin schemes. J. Comput. Phys. 306, 343–369 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, Z.J., Gao, H.: A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids. J. Comput. Phys. 228(21), 8161–8186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Haga, T., Gao, H., Wang, Z.J.: A high-order unifying discontinuous formulation for the Navier–Stokes equations on 3D mixed grids. Math. Model. Nat. Phenom. 6(3), 28–56 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Williams, D., Jameson, A.: Energy stable flux reconstruction schemes for advection–diffusion problems on tetrahedra. J. Sci. Comput. 59(3), 721–759 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Vermeire, B.C., Nadarajah, S., Tucker, P.G.: Implicit large eddy simulation using the high-order correction procedure via reconstruction scheme. Int. J. Numer. Methods Fluids 82(5), 231–260 (2016)

    Article  MathSciNet  Google Scholar 

  13. Vermeire, B., Cagnone, J.-S., Nadarajah, S.: ILES using the correction procedure via reconstruction scheme. In: 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p. 1001. (2013)

  14. Moura, R.C., Sherwin, S., Peiró, J.: Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods. J. Comput. Phys. 298, 695–710 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Moura, R.C., Sherwin, S., Peiró, J.: Eigensolution analysis of spectral/hp continuous Galerkin approximations to advection–diffusion problems: insights into spectral vanishing viscosity. J. Comput. Phys. 307, 401–422 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Moura, R.C., Peiró, J., Sherwin, S.J.: Implicit LES approaches via discontinuous Galerkin methods at very large Reynolds. In: Salvetti, M., Armenio, V., Fröhlich, J., Geurts, B., Kuerten, H. (eds.) Direct and Large-Eddy Simulation XI. ERCOFTAC Series, vol. 25. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-04915-7_8

  17. Vincent, P.E., Castonguay, P., Jameson, A.: Insights from von Neumann analysis of high-order flux reconstruction schemes. J. Comput. Phys. 230(22), 8134–8154 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Asthana, K., Jameson, A.: High-order flux reconstruction schemes with minimal dispersion and dissipation. J. Sci. Comput. 62(3), 913–944 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sengupta, T.K., Ganeriwal, G., De, S.: Analysis of central and upwind compact schemes. J. Comput. Phys. 192(2), 677–694 (2003)

    Article  MATH  Google Scholar 

  20. Sengupta, T.K., Dipankar, A., Sagaut, P.: Error dynamics: beyond Von Neumann analysis. J. Comput. Phys. 226(2), 1211–1218 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vermeire, B., Vincent, P.: On the behaviour of fully-discrete flux reconstruction schemes. Comput. Methods Appl. Mech. Eng. 315, 1053–1079 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vanharen, J., Puigt, G., Vasseur, X., Boussuge, J.-F., Sagaut, P.: Revisiting the spectral analysis for high-order spectral discontinuous methods. J. Comput. Phys. 337, 379–402 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, H., Li, F., Qiu, J.: Dispersion and dissipation errors of two fully discrete discontinuous Galerkin methods. J. Sci. Comput. 55(3), 552–574 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Van den Abeele, K.: Development of high-order accurate schemes for unstructured grids. Phd thesis in Vrije Universiteit Brussel (2009)

  25. Gao, J., Yang, Z., Li, X.: An optimized spectral difference scheme for CAA problems. J. Comput. Phys. 231(14), 4848–4866 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Castonguay, P., Vincent, P.E., Jameson, A.: A new class of high-order energy stable flux reconstruction schemes for triangular elements. J. Sci. Comput. 51(1), 224–256 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hu, F.Q., Hussaini, M., Rasetarinera, P.: An analysis of the discontinuous Galerkin method for wave propagation problems. J. Comput. Phys. 151(2), 921–946 (1999)

    Article  MATH  Google Scholar 

  28. Trojak, W., Watson, R., Scillitoe, A., Tucker, P.G.: Effect of Mesh Quality on Flux Reconstruction in Multi-Dimensions. arXiv preprint arXiv:1809.05189 (2018)

  29. Van den Abeele, K., Ghorbaniasl, G., Parsani, M., Lacor, C.: A stability analysis for the spectral volume method on tetrahedral grids. J. Comput. Phys. 228, 257–265 (2009)

    Article  MATH  Google Scholar 

  30. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131(2), 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Vermeire, B.C., Vincent, P.E.: On the properties of energy stable flux reconstruction schemes for implicit large eddy simulation. J. Comput. Phys. 327, 368–388 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)

    Article  MATH  Google Scholar 

  33. Wang, Z.J., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Hartmann, R., Hillewaert, K., Huynh, H.T., et al.: High-order CFD methods: current status and perspective. Int. J. Numer. Methods Fluids 72(8), 811–845 (2013)

    Article  MathSciNet  Google Scholar 

  34. Abe, H., Kawamura, H., Matsuo, Y.: Direct numerical simulation of a fully developed turbulent channel flow with respect to the Reynolds number dependence. J. Fluids Eng. 123(2), 382–393 (2001)

    Article  Google Scholar 

  35. Williams, D., Shunn, L., Jameson, A.: Symmetric quadrature rules for simplexes based on sphere close packed lattice arrangements. J. Comput. Appl. Math. 266, 18–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shunn, L., Ham, F.: Symmetric quadrature rules for tetrahedra based on a cubic close-packed lattice arrangement. J. Comput. Appl. Math. 236(17), 4348–4364 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Carton de Wiart, C., Hillewaert, K., Duponcheel, M., Winckelmans, G.: Assessment of a discontinuous Galerkin method for the simulation of vortical flows at high Reynolds number. Int. J. Numer. Methods Fluids 74(7), 469–493 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), [RGPAS-2017-507988, RGPIN-2017-06773]. This research was enabled in part by support provided by Calcul Quebec (www.calculquebec.ca), WestGrid (www.westgrid.ca), SciNet (www.scinethpc.ca), and Compute Canada (www.computecanada.ca) via a Resources for Research Groups allocation. We would also like to thank the anonymous reviewers whose comments have improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Pereira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dispersion Curves for Higher-Order Spatial Discretizations

Dispersion Curves for Higher-Order Spatial Discretizations

See Figs. 2122232425 and 26.

Fig. 21
figure 21

Eigenmodes for a wave aligned with the \(x_1\) direction

Fig. 22
figure 22

Eigenmodes for a wave aligned with the main diagonal of the cuboid at \(\beta _1 \approx 0.615, \beta _2=\frac{\pi }{4}\)

Fig. 23
figure 23

Eigenmodes for a wave at \(\beta _1=\frac{\pi }{9},~\beta _2=\frac{\pi }{9}\)

Fig. 24
figure 24

Eigenmodes for a wave aligned with the \(x_1\) direction

Fig. 25
figure 25

Eigenmodes for a wave aligned with the main diagonal of the cuboid at \(\beta _1 \approx 0.615, \beta _2=\frac{\pi }{4}\)

Fig. 26
figure 26

Eigenmodes for a wave at \(\beta _1=\frac{\pi }{9},~\beta _2=\frac{\pi }{9}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, C.A., Vermeire, B.C. Spectral Properties of High-Order Element Types for Implicit Large Eddy Simulation. J Sci Comput 85, 48 (2020). https://doi.org/10.1007/s10915-020-01329-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01329-3

Keywords

Navigation