Skip to main content
Log in

A Stable Radial Basis Function Partition of Unity Method with d-Rectangular Patches for Modelling Water Flow in Porous Media

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Richards’ equation is used to describe water flow in porous media. It is strongly nonlinear, which makes the approximation of its solution a challenging task. In this study, we aim to linearize Richards’ equation using the exponential Gardner models of hydraulic conductivity and moisture content variables. Then, we propose a new formulation of radial basis function partition of unity method (RBFPUM) based on d-rectangular patches as local subdomains in order to approximate the solution of the linearized Richards’ equation. In particular, the multivariate weights are expressed as a product of one dimensional Wendland compactly supported radial basis functions. With small values of the shape parameter contained in the Gaussian radial basis function, safe computations of the solution will be achieved by adopting RBF-QR algorithm (Forenberg et al. in SIAM J Sci Comput 33(2):869–892, 2011). Hence, an efficient numerical solution can be obtained not only in terms of safe computations but also in terms of accuracy, as we will see in the numerical examples. In order to deal with layered soils, another method is proposed for the 2D and the 3D cases. It is based on the domain decomposition principle coupled with RBFPUM by using d-rectangular patches and the RBF-QR algorithm. The matching conditions, i.e. the continuity of mass fluxes and pressure head, are imposed at the interface between zones via the Steklov–Poincaré equation. The efficiency of the proposed method will be examined via some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://it.uu.se/research/scientific_computing/software/rbf_qr.

References

  1. Babuska, I., Melenk, J.M.: The partition of unity method. Int. J. Numer. Methods Eng. 40(4), 727–758 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-Ahmed, E., Sadik, M., Wakrim, M.: Radial basis function partition of unity method for modelling water flow in porous media. Comput. Math. Appl. 75(8), 2925–2941 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caveretto, R., De Marchi, S., De Rossi, A., Perrachione, E., Santin, G.: Partition of unity interpolation using stable kernel-based techniques. Appl. Numer. Math. 116, 95–107 (2017)

    Article  MathSciNet  Google Scholar 

  4. Cavoretto, R., De Rossi, A., Perracchione, E.: Efficient computation of partition of unity interpolants through a block-based searching technique. Comput. Math. Appl. 71, 2568–2584 (2016)

    Article  MathSciNet  Google Scholar 

  5. Driscoll, T.A., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions. Comput. Math. Appl. 43, 413–422 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Duan, Y., Tang, P.F., Huang, T.Z., Lai, S.J.: Coupling domain decomposition method in electrostatic problems. Comput. Phys. Commun. 180, 209–214 (2009)

    Article  MATH  Google Scholar 

  7. Fasshauer, G.E., McCourt, M.J.: Stable evaluation of gaussain RBF interpolants. SIAM J. Sci. Comput. 34(2), A737–A762 (2012)

    Article  MATH  Google Scholar 

  8. Forenberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869–892 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fornberg, B., Lehto, E., Powell, C.: Stable calculation of Gaussian-based RBF-FD stencils. Comput. Math. Appl. 65, 627–637 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput. 30, 60–80 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fornberg, B., Wright, G.B.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48, 853–867 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fornberg, B., Wright, G., Larsson, E.: Some observations regarding interpolants in the limit of flat radial basis functions. Comput. Math. Appl. 47, 37–55 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gardner, W.: Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci. 85, 228–232 (1958)

    Article  Google Scholar 

  14. Griebel, M., Schweitzer, M.A.: A particle-partition of unity method-part II: efficient cover construction and reliable integration. SIAM J. Sci. Comput. 23(5), 1655–1682 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Havercamp, R., Vauclin, M., Touma, J., Wierenga, P.J., Vachaud, G.: A comparison of numerical simulation models for one-dimensional infiltration. Soil Sci. Soc. Am. J. 41, 285–294 (1977)

    Article  Google Scholar 

  16. Heryudono, A., Larsson, E., Ramage, A., von Sydow, L.: Preconditioning for radial basis function partition of unity methods. J. Sci. Comput. 67(3), 1089–1109 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kansa, E.J.: Mutliquadrics—a scattered data approximation scheme with applications to computational fluid dynamics I. Surface approximations and partial derivative equations. Comput. Math. Appl. 19(8/9), 127–145 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kansa, E.J.: Multiquadrics-A scattered data approximation scheme with applications to computational fluid dynamics II. Solutions to parabolic, hyperbolic, and elliptic partial difference equations. Comput. Math. Appl. 19(8/9), 147–161 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kirkland, M.R., Hints, R.G.: Algorithms for solving Richards’ equation for variably saturated soils. Water Resour. Res. 28(8), 2049–2058 (1992)

    Article  Google Scholar 

  20. Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions. Comput. Math. Appl. 49(1), 103–130 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Larsson, E., Shcherbakov, V., Heryudono, A.: A least squares radial basis function partition of unity method for solving PDEs. SIAM J. Sci. Comput. 39(6), A2538–A2563 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Quarteroni, A., Valli, A.: Domain Decomposition Method for Partial Differential Equation. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  23. Rashidinia, J., Khasi, M., Fasshauer, G.E.: A stable gaussian radial basis function method for solving nonlinear unsteady convection–diffusion–reaction equations. Comput. Math. Appl. 75(5), 1831–1850 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Richards, L.A.: Cappillary conduction liquids through porous mediums. J. Appl. Phys. 1, 318–333 (1931). https://doi.org/10.1063/1.1745010

    Article  MATH  Google Scholar 

  25. Saad, Y.: Iterative Methods for Sparse Linear Systems: Second Edition, Society for Industrial and Applied Mathematics (2003)

  26. Sadik, M., Ben-Ahmed, E., Wakrim, M.: RBFPUM with QR factorization for solving water flow problem in multilayered soil. Int. J. Nonlinear Sci. Numer. Simul. 19(3/4), 397–407 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Safdari-Vaighani, A., Heryudono, A., Larsson, E.: A radial basis function partition of unity collocation method for convection–diffusion equations arising in financial applications. J. Sci. Comput. 64(2), 341–367 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schaback, R.: Multivariate interpolation by polynomials and radial basis functions. Constr. Approx. 21, 293–317 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 23rd ACM National Conference, pp. 517–524 (1968). https://doi.org/10.1145/800186.810616

  30. Shcherbakov, V.: Radial basis function partition of unity operator splitting method for pricing multi-asset American options. BIT Numer Math (2016). https://doi.org/10.1007/s10543-016-0616-y

    Article  MathSciNet  MATH  Google Scholar 

  31. Shcherbakov, V., Larsson, E.: Radial basis function partition of unity methods for pricing vanilla basket options. Comput. Math. Appl. 71(1), 185–200 (2016). https://doi.org/10.1016/j.camwa.2015.11.007

    Article  MathSciNet  Google Scholar 

  32. Srivastava, R., Yeh, T.-C.J.: Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soils. Water Resour. Res. 27(5), 753–762 (1991)

    Article  Google Scholar 

  33. Stevens, D., Power, H.: A scalable and implicit meshless RBF method for the 3D unsteady nonlinear Richards equation with single and multi-zone domain. Int. J. Numer. Methods Eng. 85, 135–163 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tracy, F.T.: Clean two- and three-dimensional analytical solutions of Richards’ equation for testing numerical solvers. Water Resour. Res. 42, W08503 (2006). https://doi.org/10.1029/2005WR004638

    Article  Google Scholar 

  35. Tracy, F.T.: Accuracy and performance testing of three-dimensional unsaturated flow finite element groundwater programs on the cray xt3 using analytical solutions. In: HPCMP–UGC’06: Proceedings of the HPCMP Users Group Conference, Washington, DC, USA, IEEE Computer Society: Silver Spring, MD, pp. 73–76 (2006)

  36. Tracy, F.T.: Analytical and numerical solutions of Richards’ equation with discussions on relative hydraulic conductivity, hydraulic conductivity—issues, determination and applications. In: Prof. Lakshmanan Elango (Ed.), InTech, ISBN: 978-953-307-288-3 (2011), pp. 203–223. Available from: https://www.intechopen.com/books/hydraulic-conductivity-issues-determination-and-applications/analytical-and-numerical-solutions-of-richards-equation-with-discussions-on-relative-hydraulic-condu (Accessed: 01.05.2020)

  37. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(1), 389–396 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wendland, H.: Fast evaluation of radial basis functions: Methods based on partition of unity. In: Chui, C.K., et al. (eds.) Approximation Theory X: Wavelets, Splines, and Applications, pp. 473–483. Vanderbilt Univ. Press, Nashville (2002)

    Google Scholar 

  39. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  40. Wright, G.B., Fornberg, B.: Stable computations with flat radial basis functions using vector-valued rational approximations. J. Comput. Phys. 331, 137–156 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yuan, F., Lu, Z.: Analytical solutions for vertical flow in unsaturated, rooted soils with variable surface. Vadose Zone J. 4, 1210–1218 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El Hassan Ben-Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben-Ahmed, E.H., Sadik, M. & Wakrim, M. A Stable Radial Basis Function Partition of Unity Method with d-Rectangular Patches for Modelling Water Flow in Porous Media. J Sci Comput 84, 18 (2020). https://doi.org/10.1007/s10915-020-01273-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01273-2

Keywords

Navigation