Skip to main content
Log in

Entropy and Adjoint Methods

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Aerodynamic drag can be partially approximated by the entropy flux across fluid domain boundaries with a formula due to Oswatitsch. In this paper, we build the adjoint solution that corresponds to this representation of the drag and investigate its relation to the entropy variables, which are linked to the integrated residual of the entropy transport equation. For inviscid isentropic flows, the resulting adjoint variables are identical to the entropy variables, an observation originally due to Fidkowski and Roe, while for non-isentropic flows there is a significant difference that is explicitly demonstrated with analytic solutions in the shocked quasi-1D case. Both approaches are also investigated for viscous and inviscid flows in two and three dimensions, where the adjoint equations and boundary conditions are derived. The application of both approaches to mesh adaptation is investigated, with especial emphasis on inviscid flows with shocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. Transonic rotational flows contain an additional singularity in the form of a slip line emanating from the sharp trailing edge. However, this is a contact discontinuity (no mass flow), so it does not contribute to (48).

  2. Notice also from Fig. 14 that, as in the quasi-1D case, entropy-based local indicators serve quite effectively as well as shock detectors.

  3. In Tau, the viscous flux of a quantity \( \phi \) under the effect of viscosity \( \mu \) across the dual grid face associated with edge ij is given by \( \mu \nabla \phi_{ij} \cdot \vec{n}_{ij} \), where \( \nabla \phi_{ij} = \tfrac{1}{2}(\nabla \phi_{i} + \nabla \phi_{j} ) \) in the plane perpendicular to \( \Delta \vec{x}_{ij} = \vec{x}_{i} - \vec{x}_{j} \) and \( \nabla \phi_{ij} = (\phi_{i} - \phi_{j} )\tfrac{{\Delta \vec{x}_{ij} }}{{\Delta \vec{x}_{ij} \cdot \Delta \vec{x}_{ij} }} \) in the direction of \( \Delta \vec{x}_{ij} \). Here, \( \nabla \phi_{i} \) and \( \nabla \phi_{j} \) are the gradients of \( \phi \) in the dual grid cells i and j obtained by either Green–Gauss or least-squares reconstruction.

References

  1. Jameson, A.: Aerodynamic design via control theory. J. Sci. Comput. 3(3), 233–260 (1988). https://doi.org/10.1007/BF01061285

    Article  MathSciNet  MATH  Google Scholar 

  2. Pierce, N.A., Giles, M.B.: Adjoint and defect error bounding and correction for functional estimates. J. Comput. Phys. 200(2), 769–794 (2004). https://doi.org/10.1016/j.jcp.2004.05.001

    Article  MathSciNet  MATH  Google Scholar 

  3. Fidkowski, K., Darmofal, D.: Review of output-based error estimation and mesh adaptation in computational fluid dynamics. AIAA J. 49(4), 673–694 (2011). https://doi.org/10.2514/1.J050073

    Article  Google Scholar 

  4. Sharbatdar, M., Ollivier-Gooch, C.: Adjoint-based functional correction for unstructured mesh finite volume methods. J. Sci. Comput. 76(1), 1–23 (2018). https://doi.org/10.1007/s10915-017-0611-8

    Article  MathSciNet  MATH  Google Scholar 

  5. Rizzi, A.: Spurious entropy production and very accurate solutions to the Euler equations. Aeronaut. J. 89(882), 59–71 (1985). https://doi.org/10.1017/S0001924000017711

    Article  Google Scholar 

  6. Harten, A.: On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 49(1), 151–164 (1983). https://doi.org/10.1016/0021-9991(83)90118-3

    Article  MathSciNet  MATH  Google Scholar 

  7. Tadmor, E.: Entropy functions for symmetric systems of conservation laws. J. Math. Anal. Appl. 122(2), 355–359 (1987). https://doi.org/10.1016/0022-247X(87)90265-4

    Article  MathSciNet  MATH  Google Scholar 

  8. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numerica 12, 451–512 (2003). https://doi.org/10.1017/S0962492902000156

    Article  MathSciNet  MATH  Google Scholar 

  9. Naterer, G.F., Camberos, J.A.: Entropy and the second law fluid flow and heat transfer simulation. J. Thermophys. Heat Transf. 17, 360–371 (2003). https://doi.org/10.2514/2.6777

    Article  Google Scholar 

  10. Puppo, G., Semplice, M.: Entropy and the numerical integration of conservation laws. In: Proceedings of the 2nd Annual Meeting of the Lebanese Society for Mathematical Sciences (LSMS-2011) (2011)

  11. Papadimitriou, D., Giannakoglou, K.C.: A continuous adjoint method for the minimization of losses in cascade viscous flows. AIAA Paper 2006-49. https://doi.org/10.2514/6.2006-49

  12. Andrews, J., Morton, K.: Spurious entropy generation as a mesh quality indicator. In: Deshpande, S.M., Desai, S.S., Narasimha, R. (eds.) Fourteenth International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, vol. 453, pp. 122–126. Springer, Berlin (1995). https://doi.org/10.1007/3-540-59280-6_108

    Google Scholar 

  13. Naterer, G.F., Rinn, D.: Towards entropy detection of anomalous mass and momentum exchange in incompressible fluid flow. Int. J. Numer. Methods Fluids 39(11), 1013–1036 (2002). https://doi.org/10.1002/fld.359

    Article  MATH  Google Scholar 

  14. Puppo, G.: Numerical entropy production for central schemes. SIAM J. Sci. Comput. 25(4), 1382–1415 (2003). https://doi.org/10.1137/S1064827502386712

    Article  MathSciNet  MATH  Google Scholar 

  15. Golay, F.: Numerical entropy production and error indicator for compressible flows. C. R. Mecanique 337, 233–237 (2009). https://doi.org/10.1016/j.crme.2009.04.004

    Article  MATH  Google Scholar 

  16. Fidkowski, K.J., Roe, P.L.: An entropy adjoint approach to mesh refinement. SIAM J. Sci. Comput. 32(3), 1261–1287 (2010). https://doi.org/10.1137/090759057

    Article  MathSciNet  MATH  Google Scholar 

  17. Fidkowski, K., Ceze, M., Roe, P.: Entropy-based drag error estimation and mesh adaptation in two dimensions. J. Aircr. 49(5), 1485–1496 (2012). https://doi.org/10.2514/1.c031795

    Article  Google Scholar 

  18. Ching, E., Ihme, Y.L.M.: Entropy residual as a feature-based adaptation indicator for simulations of unsteady flow. AIAA Paper 2016-0837. https://doi.org/10.2514/6.2016-0837

  19. Doetsch, K.T., Fidkowski, K.: Combined entropy and output-based adjoint approach for mesh refinement and error estimation. AIAA Paper 2018-0918. https://doi.org/10.2514/6.2018-0918

  20. Oswatitsch, K.: Gas Dynamics. Academic Press, New York (1956)

    Google Scholar 

  21. Denton, J.D.: The 1993 IGTI scholar lecture: loss mechanisms in turbomachines. ASME J. Turbomach. 115(4), 621–656 (1993). https://doi.org/10.1115/1.2929299

    Article  Google Scholar 

  22. Lozano, C.: The entropy adjoint for shocked flows: application to the quasi-one-dimensional Euler equations (2014). https://doi.org/10.13140/rg.2.2.27482.54725

  23. Giles, M.B., Cummings, R.M.: Wake integration for three-dimensional flowfield computations: theoretical development. J. Aircr. 36(2), 357–365 (1999). https://doi.org/10.2514/2.2465

    Article  Google Scholar 

  24. Destarac, D.: Far-field/near-field drag balance and applications of drag extraction in CFD. In: Deconinck, H., Sermeus, K., Van Dam, C. (eds.) CFD-Based Aircraft Drag Prediction and Reduction. VKI for Fluid Dynamics, Lecture Series 2003-02. Rhode-Saint-Genèse, Belgium, 3–7 Feb 2003

  25. Yamazaki, W., Matsushima, K., Nakahashi, K.: Drag decomposition-based adaptive mesh refinement. J. Aircr. 44(6), 1896–1905 (2007). https://doi.org/10.2514/1.31064

    Article  Google Scholar 

  26. Lozano, C.: Singular and discontinuous solutions of the adjoint euler equations. AIAA J. 56(11), 4437–4452 (2018). https://doi.org/10.2514/1.J056523

    Article  Google Scholar 

  27. Müller, J.-D., Giles, M.B.: Solution adaptive mesh refinement using adjoint error analysis. In: 15th Computational Fluid Dynamics Conference (AIAA Paper 2001-2550), Anaheim, CA, 11–14 June 2001. https://doi.org/10.2514/6.2001-2550

  28. Giles, M.B., Pierce, N. A.: Adjoint error correction for integral outputs. In: Barth, T., Deconinck, H. (eds.) Error Estimation and Solution Adaptive Discretization in Computational Fluid Dynamics (Lecture Notes in Computer Science and Engineering, vol. 25, pp. 47–95). Springer, Berlin (2002). https://doi.org/10.1007/978-3-662-05189-4_2

    Chapter  Google Scholar 

  29. Venditti, D., Darmofal, D.: Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows. J. Comput. Phys. 187, 22–46 (2003). https://doi.org/10.1016/S0021-9991(03)00074-3

    Article  MATH  Google Scholar 

  30. Fraysse, F., de Vicente, J., Valero, E.: The estimation of truncation error by τ-estimation revisited. J. Comput. Phys. 231(9), 3457–3482 (2012). https://doi.org/10.1016/j.jcp.2011.09.031

    Article  MathSciNet  MATH  Google Scholar 

  31. Fraysse, F., Valero, E., Ponsin, J.: Comparison of mesh adaptation using the adjoint methodology and truncation error estimates. AIAA J. 50(9), 1920–1932 (2012). https://doi.org/10.2514/1.J051450

    Article  Google Scholar 

  32. Ponsin, J., Fraysse, F., Gómez, M., Cordero-Gracia, M.: An adjoint-truncation error based approach for goal-oriented mesh adaptation. Aerosp. Sci. Technol. 41, 229–240 (2015). https://doi.org/10.1016/j.ast.2014.10.021

    Article  Google Scholar 

  33. Dwight, R.: Heuristic a posteriori estimation of error due to dissipation in finite volume schemes and application to mesh adaptation. J. Comput. Phys. 227, 2845–2863 (2008). https://doi.org/10.1016/j.jcp.2007.11.020

    Article  MATH  Google Scholar 

  34. Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49(179), 91–103 (1987). https://doi.org/10.1090/S0025-5718-1987-0890255-3

    Article  MathSciNet  MATH  Google Scholar 

  35. Lv, Y., See, Y.C., Ihme, M.: An entropy-residual shock detector for solving conservation laws using high-order discontinuous Galerkin methods. J. Comput. Phys. 322, 448–472 (2016). https://doi.org/10.1016/j.jcp.2016.06.052

    Article  MathSciNet  MATH  Google Scholar 

  36. Jameson, A., Schmidt, W., Turkel, E.: Numerical solutions of the Euler equations by finite volume methods using Runge–Kutta time-stepping schemes. AIAA Paper 81-1259, AIAA 14th Fluid and Plasma Dynamic Conference, Palo Alto, CA, June 1981. https://doi.org/10.2514/6.1981-1259

  37. Anderson, J.D.: Modern Compressible Flow, 2nd edn, p. 155. McGraw-Hill, New York (1990)

    Google Scholar 

  38. Giles, M.B., Pierce, N.A.: Analytic adjoint solutions for the quasi-one-dimensional Euler equations. J. Fluid Mech. 426, 327–345 (2001). https://doi.org/10.1017/S0022112000002366

    Article  MathSciNet  MATH  Google Scholar 

  39. Lozano, C., Ponsin, J.: Remarks on the numerical solution of the adjoint quasi-one-dimensional Euler equations. Int. J. Numer. Methods Fluids 69(5), 966–982 (2012). https://doi.org/10.1002/fld.2621

    Article  MathSciNet  MATH  Google Scholar 

  40. Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981). https://doi.org/10.1016/0021-9991(81)90128-5

    Article  MathSciNet  MATH  Google Scholar 

  41. Chandrashekar, P.: Kinetic energy preserving and entropy stable finite volume schemes for compressible euler and Navier–Stokes equations. Commun. Comput. Phys. 14, 1252–1286 (2013). https://doi.org/10.4208/cicp.170712.010313a

    Article  MathSciNet  MATH  Google Scholar 

  42. Lozano, C.: Entropy and adjoint methods: the Oswatitsch drag adjoint (2019). https://doi.org/10.13140/rg.2.2.31338.77761

  43. Baeza, A., Castro, C., Palacios, F., Zuazua, E.: 2-D Euler shape design on nonregular flows using adjoint Rankine–Hugoniot relations. AIAA J. 47(3), 552–562 (2009). https://doi.org/10.2514/1.37149

    Article  Google Scholar 

  44. Giles, M.: Discrete adjoint approximations with shocks. In: Hou, T.Y., Tadmor, E. (eds.) Hyperbolic Problems: Theory, Numerics, Applications, pp. 185–194. Springer, Berlin (2003). https://doi.org/10.1007/978-3-642-55711-8_16

    Chapter  Google Scholar 

  45. Barth, T.J.: Aspects of unstructured grids and finite-volume solvers for the Euler and Navier–Stokes equations. In: Special Course on Unstructured Methods for Advection Dominated Flows, AGARD Rept. 787, pp. 6-1–6-61 (1991)

  46. Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-code: recent applications in research and industry. In: ECCOMAS CFD 2006, European Conference on CFD, Egmond aan Zee, The Netherlands (2006)

  47. Castro, C., Lozano, C., Palacios, F., Zuazua, E.: Systematic continuous adjoint approach to viscous aerodynamic design on unstructured grids. AIAA J. 45(9), 2125–2139 (2007). https://doi.org/10.2514/1.24859

    Article  Google Scholar 

  48. Ponsin, J.: Efficient adaptive methods based on adjoint equations and truncation error estimation for unstructured grids. Ph.D. thesis, Technical University of Madrid (2013). http://oa.upm.es/23179/1/JORGE_PONSIN_ROCA.pdf

Download references

Acknowledgements

This work has been supported by INTA and the Spanish Ministry of Defence under the research program “Termofluidodinámica” (IGB99001). The 2D and 3D computations were carried out with the TAU Code, developed at DLR’s Institute of Aerodynamics and Flow Technology at Göttingen and Braunschweig, which is licensed to INTA through a research and development cooperation agreement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Lozano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozano, C. Entropy and Adjoint Methods. J Sci Comput 81, 2447–2483 (2019). https://doi.org/10.1007/s10915-019-01092-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01092-0

Keywords

Navigation