Skip to main content
Log in

Energy Decay and Stability of a Perfectly Matched Layer For the Wave Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In Grote and Sim (Efficient PML for the wave equation. Preprint, arXiv:1001.0319 [math:NA], 2010; in: Proceedings of the ninth international conference on numerical aspects of wave propagation (WAVES 2009, held in Pau, France, 2009), pp 370–371), a PML formulation was proposed for the wave equation in its standard second-order form. Here, energy decay and \(L^2\) stability bounds in two and three space dimensions are rigorously proved both for continuous and discrete formulations with constant damping coefficients. Numerical results validate the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abarbanel, S., Gottlieb, D.: A mathematical analysis of the PML method. J. Comput. Phys. 134, 357–363 (1997)

    Article  MathSciNet  Google Scholar 

  2. Abarbanel, S., Gottlieb, D., Hestahaven, J.S.: Well-posed perfectly matched layers for advective acoustics. J. Comput. Phys. 154, 266–283 (1999)

    Article  MathSciNet  Google Scholar 

  3. Appelö, D., Hagstrom, T., Kreiss, G.: Perfectly matched layers for hyperbolic systems: general formulation, well-posedness, and stability. SIAM J. Appl. Math. 67(1), 1–23 (2006)

    Article  MathSciNet  Google Scholar 

  4. Appelö, D., Kreiss, G.: Application of a perfectly matched layer to the nonlinear wave equation. Wave Motion 44, 531–548 (2007)

    Article  MathSciNet  Google Scholar 

  5. Barucq, H., Diaz, J., Tlemcani, M.: New absorbing layers conditions for short water waves. J. Comput. Phys. 229(1), 58–72 (2010). https://doi.org/10.1016/j.jcp.2009.08.033

    Article  MathSciNet  MATH  Google Scholar 

  6. Bécache, E., Fauqueux, S., Joly, P.: Stability of perfectly matched layers, group velocities and anisotropic waves. J. Comput. Phys. 188, 399–433 (2003)

    Article  MathSciNet  Google Scholar 

  7. Bécache, E., Joly, P.: On the analysis of Bérenger’s perfectly matched layers for Maxwell’s equations. M2AN Math. Model. Numer. Anal. 36(1), 87–119 (2002)

    Article  MathSciNet  Google Scholar 

  8. Bécache, E., Joly, P., Kachanovska, M.: Stable perfectly matched layers for a cold plasma in a strong background magnetic field. J. Comput. Phys. 341, 76–101 (2017). https://doi.org/10.1016/j.jcp.2017.03.051

    Article  MathSciNet  MATH  Google Scholar 

  9. Bécache, É., Joly, P., Kachanovska, M., Vinoles, V.: Perfectly matched layers in negative index metamaterials and plasmas. CANUM 2014–42e Congrès National d’Analyse Numérique, ESAIM Proc. Surveys, vol. 50, pp. 113–132. EDP Sci, Les Ulis (2015)

    Article  MathSciNet  Google Scholar 

  10. Bécache, E., Joly, P., Vinoles, V.: On the analysis of perfectly matched layers for a class of dispersive media and application to negative index metamaterials. Math. Comput. 87(314), 2775–2810 (2018)

    Article  MathSciNet  Google Scholar 

  11. Bécache, E., Kachanovska, M.: Stable perfectly matched layers for a class of anisotropic dispersive models. Part I: necessary and sufficient conditions of stability. ESAIM Math. Model. Numer. Anal. 51(6), 2399–2434 (2017)

    Article  MathSciNet  Google Scholar 

  12. Bécache, E., Petropoulos, P.G., Gedney, S.D.: On the long-time behavior of unsplit perfectly matched layers. IEEE Trans. Antennas Propag. 52(5), 1335–1342 (2004)

    Article  MathSciNet  Google Scholar 

  13. Bérenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)

    Article  MathSciNet  Google Scholar 

  14. Bérenger, J.P.: Three-dimensional perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 127(2), 363–379 (1996)

    Article  MathSciNet  Google Scholar 

  15. Chabassier, J., Imperiale, S.: Space/time convergence analysis of a class of conservative schemes for linear wave equations. C. R. Math. Acad. Sci. Paris 355(3), 282–289 (2017). https://doi.org/10.1016/j.crma.2016.12.009

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, Z.: Convergence of the time-domain perfectly matched layer method for acoustic scattering problems. Int. J. Numer. Anal. Model. 6(1), 124–146 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Chew, W.C., Weedon, W.H.: A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microw. Opt. Technol. Lett. 7(13), 599–604 (1994)

    Article  Google Scholar 

  18. Collino, F., Monk, P.B.: Optimizing the perfectly matched layer. Comput. Methods Appl. Mech. Eng. 164(1–2), 157–171 (1998). https://doi.org/10.1016/S0045-7825(98)00052-8. Exterior problems of wave propagation (Boulder, CO, 1997; San Francisco, CA, 1997)

    Article  MathSciNet  Google Scholar 

  19. Collino, F., Tsogka, C.: Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics 66, 294–307 (2001)

    Article  Google Scholar 

  20. Demaldent, E., Imperiale, S.: Perfectly matched transmission problem with absorbing layers: application to anisotropic acoustics in convex polygonal domains. Int. J. Numer. Methods Eng. 96(11), 689–711 (2013). https://doi.org/10.1002/nme.4572

    Article  MathSciNet  MATH  Google Scholar 

  21. Diaz, J., Joly, P.: A time domain analysis of PML models in acoustics. Comput. Methods Appl. Mech. Eng. 195(29–32), 3820–3853 (2006)

    Article  MathSciNet  Google Scholar 

  22. Duru, K.: The role of numerical boundary procedures in the stability of perfectly matched layers. SIAM J. Sci. Comput. 38(2), A1171–A1194 (2016). https://doi.org/10.1137/140976443

    Article  MathSciNet  MATH  Google Scholar 

  23. Duru, K., Kreiss, G.: Boundary waves and stability of the perfectly matched layer for the two space dimensional elastic wave equation in second order form. SIAM Numer. Anal. 52, 2883–2904 (2014)

    Article  MathSciNet  Google Scholar 

  24. Ervedoza, S., Zuazua, E.: Perfectly matched layers in 1-d: energy decay for continuous and semi-discrete waves. Numer. Math. 109(4), 597–634 (2008)

    Article  MathSciNet  Google Scholar 

  25. Grote, M., Sim, I.: Efficient PML for the wave equation. Preprint. arXiv:1001.0319 [math:NA] (2010)

  26. Grote, M.J., Sim, I.: Perfectly matched layer for the second-order wave equation. In: Proceedings of the Ninth International Conference on Numerical Aspects of Wave Propagation (WAVES 2009, held in Pau, France, 2009), pp. 370–371

  27. Hagstrom, T., Appelö, D.: Automatic symmetrization and energy estimates using local operators for partial differential equations. Commun. Partial Differ. Equ. 32(7–9), 1129–1145 (2007)

    Article  MathSciNet  Google Scholar 

  28. Hu, F.Q.: On absorbing boundary conditions for linearized Euler equations by a perfectly matched layer. J. Comput. Phys. 129, 201–219 (1996)

    Article  MathSciNet  Google Scholar 

  29. Hu, F.Q.: A stable, perfectly matched layer for linearized Euler equations in unsplit physical variables. J. Comput. Phys. 173(2), 455–480 (2001). https://doi.org/10.1006/jcph.2001.6887

    Article  MathSciNet  MATH  Google Scholar 

  30. Joly, P.: An elementary introduction to the construction and the analysis of perfectly matched layers for time domain wave propagation. SeMA J. 57, 5–48 (2012)

    Article  MathSciNet  Google Scholar 

  31. Kachanovska, M.: Stable perfectly matched layers for a class of anisotropic dispersive models. Part II: energy estimates (2017). https://hal.inria.fr/hal-01419682. Https://hal.inria.fr/hal-01419682

  32. Kaltenbacher, B., Kaltenbacher, M., Sim, I.: A modified and stable version of a perfectly matched layer technique for the 3-d second order wave equation in time domain with an application to aeroacoustics. J. Comput. Phys. 235, 407–422 (2013). https://doi.org/10.1016/j.jcp.2012.10.016

    Article  MathSciNet  MATH  Google Scholar 

  33. Komatitsch, D., Tromp, J.: A perfectly matched layer absorbing boundary conditionfor the second-order seismic wave equation. Geophys. J. Int. 154, 146–153 (2003)

    Article  Google Scholar 

  34. Nataf, F.: A new approach to perfectly matched layers for the linearized Euler system. J. Comput. Phys. 214(2), 757–772 (2006). https://doi.org/10.1016/j.jcp.2005.10.014

    Article  MathSciNet  MATH  Google Scholar 

  35. Sjögreen, B., Petersson, N.A.: Perfectly matched layers for Maxwell’s equations in second order formulation. J. Comput. Phys. 209, 19–46 (2005)

    Article  MathSciNet  Google Scholar 

  36. Zhao, L., Cangellaris, A.C.: Gt-pml: generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids. IEEE Trans. Microw. Theory Tech. 44(12), 2555–2563 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

The fourth author acknowledges the partial support of a public Grant as part of the Investissement d’avenir Project, Reference ANR-11-LABX-0056-LMH, LabEx LMH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel H. Baffet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baffet, D.H., Grote, M.J., Imperiale, S. et al. Energy Decay and Stability of a Perfectly Matched Layer For the Wave Equation. J Sci Comput 81, 2237–2270 (2019). https://doi.org/10.1007/s10915-019-01089-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01089-9

Keywords

Navigation