Skip to main content
Log in

Energy Stable Semi-implicit Schemes for Allen–Cahn–Ohta–Kawasaki Model in Binary System

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a first order energy stable linear semi-implicit method for solving the Allen–Cahn–Ohta–Kawasaki equation. By introducing a new nonlinear term in the Ohta–Kawasaki free energy functional, all the system forces in the dynamics are localized near the interfaces which results in the desired hyperbolic tangent profile. In our numerical method, the time discretization is done by some stabilization technique in which some extra nonlocal but linear term is introduced and treated explicitly together with other linear terms, while other nonlinear and nonlocal terms are treated implicitly. The spatial discretization is performed by the Fourier collocation method with FFT-based fast implementations. The energy stabilities are proved for this method in both semi-discretization and full discretization levels. Numerical experiments indicate the force localization and desire hyperbolic tangent profile due to the new nonlinear term. We test the first order temporal convergence rate of the proposed scheme. We also present hexagonal bubble assembly as one type of equilibrium for the Ohta–Kawasaki model. Additionally, the two-third law between the number of bubbles and the strength of long-range interaction is verified which agrees with the theoretical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ohta, T., Kawasaki, K.: Equilibrium morphology of block copolymer melts. Macromolecules 19(10), 2621–2632 (1986)

    Article  Google Scholar 

  2. Hamley, I.: Developments in Block Copolymer Science and Technology. Wiley, New York (2004)

    Book  Google Scholar 

  3. Camley, B., Zhao, Y., Li, B., Levine, H., Rappel, W.-J.: Periodic migration in a physical model of cells on micropatterns. Phys. Rev. Lett. 111, 158102 (2013)

    Article  Google Scholar 

  4. Zhao, Y., Ma, Y., Sun, H., Li, B., Du, Q.: A new phase-field approach to variational implicit solvation of charged molecules with the Coulomb-field approximation. Commun. Math. Sci. 16, 1203–1223 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Du, Q., Liu, C., Ryham, R., Wang, X.: A phase field formulation of the Willmore problem. Nonlinearity 18, 1249–1267 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, X.: Asymptotic analysis of phase field formulations of bending elasticity models. SIAM J. Math. Anal. 39, 1367–1401 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, B., Zhao, Y.: Variational implicit solvation with solute molecular mechanics: from diffuse interface to sharp interface models. SIAM J. Appl. Math. 73, 1–23 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Syst. A 28, 1669 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wise, S., Wang, C., Lowengrub, J.: An energy stable and convergent finite difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47, 2269–2288 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hu, Z., Wise, S., Wang, C., Lowengrub, J.: Stable and efficient finite-difference nonlinear-multigrid scheme for the phase field crystal equation. J. Comput. Phys. 228, 5323–5339 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, C., Wise, S.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49, 945–969 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shen, J., Wang, C., Wang, X., Wise, S.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to think film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52, 546–562 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eyre, D.: Unconditionally gradient stable time marching the Cahn–Hillard equation. In: Computational and Mathematical Models of Microstructural Evolution (San Francisco, CA, 1998), Materials Research Society Symposia Proceedings, vol. 529, p. 39 (1998)

  15. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44, 1759 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cheng, W., Yang, X., Shen, J.: Efficient and accurate numerical schemes for a hydro-dynamically coupled phase field diblock copolymer model. J. Comput. Phys. 341, 44 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang, X.: Linear and unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 302, 509 (2016)

    Google Scholar 

  18. Benesova, B., Melcher, C., Suli, E.: An implicit midpoint spectral approximation of nonlocal Cahn–Hilliard equations. SIAM J. Numer. Anal. 52, 1466 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Caffarelli, L., Muler, N.E.: A \({L}^{\infty }\) bound for solutions of the Cahn–Hilliard equation. Arch. Ration. Mech. Anal. 133, 129–144 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ju, L., Li, X., Qiao, Z., Zhang, H.: Energy stability and error estimates of exponential time differencing schemes for the epitaxial growth model without slope selection. Math. Comput. 87, 1859–1885 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Du, Q., Ju, L., Li, X., Qiao, Z.: Stabilized linear semi-implicit schemes for the nonlocal Cahn–Hilliard equation. J. Comput. Phys 363, 39–54 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics Series, 2nd edn. Elsevier, Amsterdam (2003)

    MATH  Google Scholar 

  23. Camley, B., Zhao, Y., Li, B., Levine, H., Rappel, W.-J.: Crawling and turning in a minimal reaction-diffusion cell motility model: coupling cell shape and biochemistry. Phys. Rev. E 95, 012401 (2017)

    Article  Google Scholar 

  24. Ren, X., Wei, J.: Many droplet pattern in the cylindrical phase of diblock copolymer morphology. Rev. Math. Phys. 19, 879 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nakazawa, H., Ohta, T.: Microphase separation of ABC-type triblock copolymers. Macromolecules 26(20), 5503–5511 (1993)

    Article  Google Scholar 

  26. Ren, X., Wei, J.: Triblock copolymer theory: free energy, disordered phase and weak segregation. Physica D 178(1–2), 103–117 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ren, X., Wei, J.: A double bubble assembly as a new phase of a ternary inhibitory system. Arch. Ration. Mech. Anal. 215(3), 967–1034 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, C., Ren, X., Zhao, Y.: Bubble assemblies in ternary systems with long range interaction. Comm. Math. Sci. (2019) (accepted)

  29. Yan, Y., Chen, W., Wang, C., Wise, S.: A second-order energy stable BDF numerical scheme for the Cahn–Hilliard equation. Commun. Comput. Phys. 23, 572–602 (2018)

    Article  MathSciNet  Google Scholar 

  30. Wang, X., Ju, L., Du, Q.: Efficient and stable exponential time differencing Runge–Kutta methods for phase field elastic bending energy models. J. Comput. Phys. 316, 21–38 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Y. Zhao’s work is supported by Columbian College Facilitating Funds (CCFF 2018) of George Washington University and a grant from the Simons Foundation through Grant No. 357963.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxiang Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Zhao, Y. Energy Stable Semi-implicit Schemes for Allen–Cahn–Ohta–Kawasaki Model in Binary System. J Sci Comput 80, 1656–1680 (2019). https://doi.org/10.1007/s10915-019-00993-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00993-4

Keywords

Navigation