Skip to main content
Log in

A Viscosity-Independent Error Estimate of a Pressure-Stabilized Lagrange–Galerkin Scheme for the Oseen Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider a pressure-stabilized Lagrange–Galerkin scheme for the transient Oseen problem with small viscosity. In the scheme we use the equal-order approximation of order k for both the velocity and pressure, and add a symmetric pressure stabilization term. We show an error estimate for the velocity with a constant independent of the viscosity if the exact solution is sufficiently smooth. We also show an error estimate of a discrete primitive of the pressure. Numerical examples show high accuracy of the scheme for problems with small viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Achdou, Y., Guermond, J.L.: Convergence analysis of a finite element projection/Lagrange–Galerkin method for the incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 37(3), 799–826 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38(4), 173–199 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benzi, M., Golub, G., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bermejo, R., Saavedra, L.: A second order in time local projection stabilized Lagrange–Galerkin method for Navier–Stokes equations at high Reynolds numbers. Comput. Math. Appl. 72(4), 820–845 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bochev, P., Dohrmann, C., Gunzburger, M.: Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J. Numer. Anal. 44(1), 82–101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  7. Brezzi, F., Fortin, M.: A minimal stabilisation procedure for mixed finite element methods. Numer. Math. 89(3), 457–491 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezzi, F., Pitkäranta, J.: On the stabilization of finite element approximations of the Stokes equations. In: Hackbusch, W. (ed.) Efficient Solutions of Elliptic Systems, pp. 11–19. Vieweg, Wiesbaden (1984)

    Chapter  MATH  Google Scholar 

  9. Burman, E.: Pressure projection stabilizations for Galerkin approximations of Stokes’ and Darcy’s problem. Numer. Methods Partial Differ. Equ. 24(1), 127–143 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burman, E., Fernández, M.A.: Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: space discretization and convergence. Numer. Math. 107(1), 39–77 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Burman, E., Fernández, M.A.: Galerkin finite element methods with symmetric pressure stabilization for the transient Stokes equations: stability and convergence analysis. SIAM J. Numer. Anal. 47(1), 409–439 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, vol. 40. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  13. Clément, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9(2), 77–84 (1975)

    MathSciNet  MATH  Google Scholar 

  14. De Frutos, J., García-Archilla, B., John, V., Novo, J.: Grad-div stabilization for the evolutionary Oseen problem with inf-sup stable finite elements. J. Sci. Comput. 66(3), 991–1024 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. De Frutos, J., García-Archilla, B., John, V., Novo, J.: Error analysis of non inf-sup stable discretizations of the time-dependent Navier–Stokes equations with local projection stabilization. IMA J. Numer. Anal. (2018). https://doi.org/10.1093/imanum/dry044

    Article  MATH  Google Scholar 

  16. Dohrmann, C.R., Bochev, P.B.: A stabilized finite element method for the Stokes problem based on polynomial pressure projections. Int. J. Numer. Methods Fluids 46(2), 183–201 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Douglas Jr., J., Russell, T.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19(5), 871–885 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Douglas Jr., J., Wang, J.: An absolutely stabilized finite element method for the Stokes problem. Math. Comput. 52, 495–508 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Franca, L., Stenberg, R.: Error analysis of some Galerkin least squares methods for the elasticity equations. SIAM J. Numer. Anal. 28(6), 1680–1697 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)

    Book  MATH  Google Scholar 

  21. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier–Stokes problem. Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hughes, T.J.R., Franca, L.P., Balestra, M.: A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška–Brezzi condition: a stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Eng. 59(1), 85–99 (1986)

    Article  MATH  Google Scholar 

  24. Jia, H., Li, K., Liu, S.: Characteristic stabilized finite element method for the transient Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 199(45–48), 2996–3004 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. John, V., Knobloch, P., Novo, J.: Finite elements for scalar convection-dominated equations and incompressible flow problems: a never ending story? Comput. Vis. Sci. 19(5–6), 47–63 (2018)

    Article  MathSciNet  Google Scholar 

  26. John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.: On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59(3), 492–544 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. John, V., Novo, J.: Analysis of the pressure stabilized Petrov–Galerkin method for the evolutionary Stokes equations avoiding time step restrictions. SIAM J. Numer. Anal. 53(2), 1005–1031 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Laursen, M.E., Gellert, M.: Some criteria for numerically integrated matrices and quadrature formulas for triangles. Int. J. Numer. Methods Eng. 12(1), 67–76 (1978)

    Article  MATH  Google Scholar 

  29. Notsu, H.: Numerical computations of cavity flow problems by a pressure stabilized characteristic-curve finite element scheme. Trans. Jpn. Soc. Comput. Eng. Sci. (2008). ONLINE ISSN: 1347-8826

  30. Notsu, H., Tabata, M.: A combined finite element scheme with a pressure stabilization and a characteristic-curve method for the Navier–Stokes equations. Tran. Jpn. Soc. Ind. Appl. Math. 18(3), 427–445 (2008). (in Japanese)

    Google Scholar 

  31. Notsu, H., Tabata, M.: Error estimates of a pressure-stabilized characteristics finite element scheme for the Oseen equations. J. Sci. Comput. 65(3), 940–955 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Notsu, H., Tabata, M.: Error estimates of a stabilized Lagrange–Galerkin scheme for the Navier–Stokes equations. ESAIM Math. Model. Numer. Anal. 50(2), 361–380 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Olshanskii, M., Reusken, A.: Grad-div stablilization for Stokes equations. Math. Comput. 73, 1699–1718 (2004)

    Article  MATH  Google Scholar 

  34. Pironneau, O.: On the transport-diffusion algorithm and its applications to the Navier–Stokes equations. Numer. Math. 38(3), 309–332 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rui, H., Tabata, M.: A second order characteristic finite element scheme for convection-diffusion problems. Numer. Math. 92(1), 161–177 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Silvester, D.: Optimal low order finite element methods for incompressible flow. Comput. Methods Appl. Mech. Eng. 111(3–4), 357–368 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. Süli, E.: Convergence and nonlinear stability of the Lagrange–Galerkin method for the Navier–Stokes equations. Numer. Math. 53(4), 459–483 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tabata, M., Uchiumi, S.: A genuinely stable Lagrange–Galerkin scheme for convection-diffusion problems. Jpn. J. Ind. Appl. Math. 33(1), 121–143 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tabata, M., Uchiumi, S.: An exactly computable Lagrange–Galerkin scheme for the Navier–Stokes equations and its error estimates. Math. Comput. 87, 39–67 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tanaka, K., Suzuki, A., Tabata, M.: A characteristic finite element method using the exact integration. Annu. Rep. Res. Inst. Inf. Technol. Kyushu Univ. 2, 11–18 (2002). (in Japanese)

    Google Scholar 

Download references

Acknowledgements

The author is thankful to anonymous reviewers for their valuable comments that improve this paper. The author would like to express his gratitude to Professor Emeritus Masahisa Tabata of Kyushu University for valuable discussions and encouragements. This work was supported by Japan Society for the Promotion of Science (JSPS) under Grant-in-Aid for JSPS Fellows, No. 26\(\cdot \)964, and under the Japanese-German Graduate Externship (Mathematical Fluid Dynamics), and by CREST, Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Uchiumi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Estimates for LG Schemes

A Estimates for LG Schemes

Lemma 6 is shown in [39, Lemma 5.7].

Lemma 6

Let \(w^*\in W^{1,\infty }(\varOmega )^d\) and \(X_1(w^*)\) be the mapping defined in (4). Under the condition \(\Delta t |w^*|_{1,\infty } \le 1/4\), the estimate

$$\begin{aligned} \frac{1}{2} \le \det \biggl (\frac{\partial X_1(w^*)}{\partial x} \biggr ) \le \frac{3}{2} \end{aligned}$$

holds, where \(\det (\partial X_1(w^*)/\partial x)\) is the Jacobian of \(X_1(w^*)\).

Lemma 7 is shown in [35, Lemma 1].

Lemma 7

Let \(w^*\in W^{1,\infty }_0(\varOmega )^d\) and \(X_1(w^*)\) be the mapping defined in (4). Under the condition \(\Delta t|w^*|_{1,\infty } \le 1/4\), there exists a positive constant c independent of \(\Delta t\) such that for \(v \in L^2(\varOmega )^d\)

$$\begin{aligned} \Vert v \circ X_1(w^*) \Vert _{0}^{2} \le (1+ c |w^*|_{1,\infty } \Delta t) \Vert v\Vert _0^{2}. \end{aligned}$$

We now show an estimate for \(R_1^n\) in Lemma 8, or tools for estimating \(R_2^n\) and \(R_3^n\) in Lemmas 9 and 10, where \(R_i^n\), \(i=1,2,3\), are defined in (16). Although these estimates are frequently used in the analysis of the LG method, e.g. [31, 39], we show proofs of Lemmas 8 and 10 for completeness.

Lemma 8

Suppose that \(u\in Z^2\), \(w \in C(W^{1,\infty }_0) \cap H^1(L^\infty )\) and \(\Delta t |w|_{C(W^{1,\infty })} \le 1/4\). Then

$$\begin{aligned}&\Vert R_1^n\Vert _0 \le \sqrt{\Delta t} \left[ \sqrt{\frac{2}{3}} (\Vert w^{n-1}\Vert _{0,\infty }^2+1) \Vert u\Vert _{Z^2(t^{n-1},t^n)} + \left\| \frac{\partial w}{\partial t} \right\| _{L^2(t^{n-1}, t^n; L^\infty )} \Vert \nabla u^n\Vert _0 \right] . \end{aligned}$$

Proof

We estimate \(\Vert R_1^n \Vert _0\) by dividing

$$\begin{aligned} R_{1}^n =&\left( \frac{\partial u^n}{\partial t} + (w^{n-1} \cdot \nabla )u^n -\frac{u^n-u^{n-1}\circ X_1(w^{n-1})}{\Delta t} \right) \\&+ \left( (w^{n} \cdot \nabla )u^n - (w^{n-1} \cdot \nabla )u^n \right) \\ =:&R_{11}^n + R_{12}^n. \end{aligned}$$

For \(R_{11}^n\), we set

$$\begin{aligned} y(x,s):= x-sw^{n-1}(x) \Delta t, ~ t(s):=t^n-s\Delta t, \end{aligned}$$

and use Taylor’s theorem to get

$$\begin{aligned} (u^{n-1} \circ X_1(w^{n-1}))(x)&= u^n(x) - \Delta t \left( \frac{\partial u^n}{\partial t} + (w^{n-1} \cdot \nabla ) u^n \right) (x) \\&\quad + \Delta t^2 \int _0^1 (1-s) \left( \frac{\partial }{\partial t} + w^{n-1} (x) \cdot \nabla \right) ^2 u(y(x,s), t(s)) ds. \end{aligned}$$

Using the property of the Bochner integral, we then have

$$\begin{aligned} \Vert R_{11}^n\Vert _0&\le \Delta t \int _0^1 \biggl \Vert (1-s) \left( \frac{\partial }{\partial t} + w^{n-1} (\cdot ) \cdot \nabla \right) ^2 u ( y(\cdot , s), t(s)) \biggr \Vert _0 ds\\&\le \Delta t \biggl ( \int _0^1 (1-s)^2 dx \biggr )^{1/2} \biggl ( \int _0^1 \biggl \Vert \left( \frac{\partial }{\partial t} + w^{n-1} (\cdot ) \cdot \nabla \right) ^2 u ( y(\cdot , s), t(s)) \biggr \Vert _0^2 ds \biggr )^{1/2} \\&\le \sqrt{2/3} \sqrt{\Delta t} (\Vert w^{n-1}\Vert _{0,\infty }^2+1) \Vert u\Vert _{Z^2(t^{n-1},t^n)}. \end{aligned}$$

where we have used the transformation of independent variables from x to y and s to t, and the estimate \(|\det (\partial x/\partial y)| \le 2\) by virtue of Lemma 6. It is easy to show

$$\begin{aligned} \Vert R_{12}^n\Vert _0 \le \sqrt{\Delta t} \left\| \frac{\partial w}{\partial t} \right\| _{L^2(t^{n-1}, t^n; L^\infty )} \Vert \nabla u^n\Vert _0. \end{aligned}$$

Combining the two estimate, we have the conclusion. \(\square \)

Lemma 9 is a direct consequence of [1, Lemma 4.5] and Lemma 6.

Lemma 9

Let \(1\le q <\infty \), \(1\le p \le \infty \), \(1/p+1/p'=1\) and \(w_i\in W_0^{1,\infty }(\varOmega )^d\), \(i=1,2\). Under the condition \(\Delta t |w_i|_{1,\infty }\le 1/4\), it holds that, for \(v \in W^{1,qp'}(\varOmega )^d\),

$$\begin{aligned} \Vert v \circ X_1(w_1) - v \circ X_1(w_2)\Vert _{0,q} \le 2^{1/(qp')} \Delta t \Vert w_1-w_2\Vert _{0,pq}\Vert \nabla v \Vert _{0,qp'}, \end{aligned}$$

where \(X_1(\cdot )\) is defined in (4).

Lemma 10

Suppose that \(v \in H^1(H^1)\), \(w^*\in W^{1,\infty }_0(\varOmega )^d\), and \(\Delta t |w^*|_{1,\infty } \le 1/4\). Then

$$\begin{aligned}&\left\| v^n - v^{n-1} \circ X_1(w^*) \right\| _0 \le \sqrt{2 \Delta t }\biggl ( \left\| \frac{\partial v}{\partial t} \right\| _{L^2(t^{n-1}, t^n ;L^2)} + \Vert w^*\Vert _{0,\infty } \Vert \nabla v\Vert _{L^2(t^{n-1}, t^n; L^2)} \biggr ), \end{aligned}$$

where \(X_1(\cdot )\) is defined in (4).

Proof

Similar to the proof of Lemma 8, by defining

$$\begin{aligned} y(x,s):= x-sw^{*}(x) \Delta t, ~ t(s):=t^n-s\Delta t, \end{aligned}$$

and by using the property of the Bochner integral, we have the estimate

$$\begin{aligned} \left\| v^n - v^{n-1} \circ X_1(w^*) \right\| _0 \le \Delta t \int _0^1 \left\| \left( \frac{\partial }{\partial t} + (w^{*}(\cdot ) \cdot \nabla ) \right) v (y(\cdot ,s), t(s)) \right\| _0 ds. \end{aligned}$$

The conclusion follows from the transformation of the independent variables from x to y and s to t, and the estimate \(|\det (\partial x/\partial y)| \le 2\) by virtue of Lemma 6. \(\square \)

Lemma 11 is an extension of [17, Lemma 1] obtained in the 1D case.

Lemma 11

Let \(w^*\in W_0^{1,\infty }(\varOmega )^d\). Under the condition \(\Delta t |w^*|_{1,\infty }\le 1/4\), there exists a positive constant c independent of \(\Delta t\) such that, for \(v \in L^2(\varOmega )^d\),

$$\begin{aligned} \Vert v-v\circ X_1(w)\Vert _{-1} \le c \Delta t \Vert w\Vert _{1,\infty } \Vert v\Vert _{0}, \end{aligned}$$

where \(X_1(\cdot )\) is defined in (4) and \(\Vert \cdot \Vert _{-1}\) is the norm in \(H^{-1}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uchiumi, S. A Viscosity-Independent Error Estimate of a Pressure-Stabilized Lagrange–Galerkin Scheme for the Oseen Problem. J Sci Comput 80, 834–858 (2019). https://doi.org/10.1007/s10915-019-00958-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00958-7

Keywords

Mathematics Subject Classification

Navigation