Skip to main content
Log in

Optimal Quasi-diagonal Preconditioners for Pseudodifferential Operators of Order Minus Two

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present quasi-diagonal preconditioners for piecewise polynomial discretizations of pseudodifferential operators of order minus two in any space dimension. Here, quasi-diagonal means diagonal up to a sparse transformation. Considering shape regular simplicial meshes and arbitrary fixed polynomial degrees, we prove, for dimensions larger than one, that our preconditioners are asymptotically optimal. Numerical experiments in two, three and four dimensions confirm our results. For each dimension, we report on condition numbers for piecewise constant and piecewise linear polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ainsworth, M., Guzmán, J., Sayas, F.-J.: Discrete extension operators for mixed finite element spaces on locally refined meshes. Math. Comput. 85(302), 2639–2650 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ainsworth, M., McLean, W., Tran, T.: The conditioning of boundary element equations on locally refined meshes and preconditioning by diagonal scaling. SIAM J. Numer. Anal. 36(6), 1901–1932 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bey, J.: Simplicial grid refinement: on Freudenthal’s algorithm and the optimal number of congruence classes. Numer. Math. 85(1), 1–29 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications, Volume 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  5. Bramble, J.H., Lazarov, R.D., Pasciak, J.E.: A least-squares approach based on a discrete minus one inner product for first order systems. Math. Comput. 66(219), 935–955 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bramble, J.H., Pasciak, J.E.: Least-squares methods for Stokes equations based on a discrete minus one inner product. J. Comput. Appl. Math. 74(1–2), 155–173 (1996). TICAM Symposium (Austin, TX, 1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains, Volume 1341 of Lecture Notes in Mathematics. Springer, Berlin (1988). (Smoothness and asymptotics of solutions)

    Google Scholar 

  8. Führer, T.: First-order least-squares method for the obstacle problem. arXiv:1801.09622 (2018)

  9. Führer, T., Haberl, A., Praetorius, D., Schimanko, S.: Adaptive BEM with inexact PCG solver yields almost optimal computational costs. Numer. Math. (2018). Accepted for publication, preprint: https://doi.org/10.1007/s00211-018-1011-1

  10. Führer, T., Heuer, N., Niemi, A.H.: An ultraweak formulation of the Kirchhoff–Love plate bending model and DPG approximation. Math. Comput. (2018). https://doi.org/10.1090/mcom/3381

  11. Graham, I.G., Hackbusch, W., Sauter, S.A.: Finite elements on degenerate meshes: inverse-type inequalities and applications. IMA J. Numer. Anal. 25(2), 379–407 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Volume 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston (1985)

    Google Scholar 

  13. Heuer, N.: Additive Schwarz method for the \(p\)-version of the boundary element method for the single layer potential operator on a plane screen. Numer. Math. 88(3), 485–511 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heuer, N., Stephan, E.P., Tran, T.: Multilevel additive Schwarz method for the \(h\)-\(p\) version of the Galerkin boundary element method. Math. Comput. 67(222), 501–518 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hiptmair, R., Mao, S.: Stable multilevel splittings of boundary edge element spaces. BIT 52(3), 661–685 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hsiao, G.C., Wendland, W.L.: A finite element method for some integral equations of the first kind. J. Math. Anal. Appl. 58, 449–481 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hsiao, G.C., Wendland, W.L.: The Aubin–Nitsche lemma for integral equations. J. Integral Equ. 3, 299–315 (1981)

    MathSciNet  MATH  Google Scholar 

  18. Karkulik, M., Pavlicek, D., Praetorius, D.: On 2D newest vertex bisection: optimality of mesh-closure and \(H^1\)-stability of \(L_2\)-projection. Constr. Approx. 38(2), 213–234 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Langer, U., Pusch, D., Reitzinger, S.: Efficient preconditioners for boundary element matrices based on grey-box algebraic multigrid methods. Int. J. Numer. Methods Eng. 58(13), 1937–1953 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mund, P., Stephan, E.P., Weiße, J.: Two level methods for the single layer potential in \({{\mathbb{R}}}^3\). Computing 60, 243–266 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Oswald, P.: Multilevel finite element approximation. Teubner Skripten zur Numerik. [Teubner Scripts on Numerical Mathematics]. B. G. Teubner, Stuttgart, Theory and applications (1994)

  22. Oswald, P.: Multilevel norms for \(H^{-1/2}\). Computing 61(3), 235–255 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Oswald, P.: Interface preconditioners and multilevel extension operators. In: Eleventh International Conference on Domain Decomposition Methods (London, 1998), pp. 97–104. DDM.org, Augsburg (1999)

  24. Steinbach, O., Wendland, W.L.: The construction of some efficient preconditioners in the boundary element method. Adv. Comput. Math. 9(1–2), 191–216 (1998). Numerical treatment of boundary integral equations

    Article  MathSciNet  MATH  Google Scholar 

  25. Stevenson, R.: The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77(261), 227–241 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stevenson, R., van Venetië, R.: Optimal preconditioning for problems of negative order. arXiv:1803.05226 (2018)

  27. Toselli, A., Widlund, O.: Domain Decomposition Methods–Algorithms and Theory, Volume 34 of Springer Series in Computational Mathematics. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  28. Tran, T., Stephan, E.P.: Additive Schwarz method for the h-version boundary element method. Appl. Anal. 60, 63–84 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. von Petersdorff, T., Stephan, E.P.: Multigrid solvers and preconditioners for first kind integral equations. Numer. Methods Partial Differ. Equ. 8(5), 443–450 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by CONICYT through FONDECYT Projects 11170050 and 1150056

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Führer.

Appendix A. Proof of Lemma 7

Appendix A. Proof of Lemma 7

We follow exactly the same ideas and lines of proof as in [1, Appendix A] adapted to our situation (with volume force but homogeneous boundary conditions) and notation.

Throughout fix \(T\in \mathcal {T}\) and let \(\eta \in C^\infty (\omega (T))\) denote a cut-off function with the properties

$$\begin{aligned} \eta |_T&= 1, \qquad \eta |_{\Omega \setminus \omega (T)} = 0, \end{aligned}$$
(17a)
$$\begin{aligned} \Vert D^m \eta \Vert _{L^\infty (\omega (T))}&\lesssim h_T^{-m}, \quad \text {for } m=0,1,2. \end{aligned}$$
(17b)

Let \(u\in H_0^1(\Omega )\) denote the solution of (13) with datum \(f\in L^2(\Omega )\). Let \(s = s(\Omega )\in (1/2,1]\) denote the regularity shift. Then, by (14) we have that

$$\begin{aligned} \Vert u\Vert _{1+s,T} \le \Vert \eta u\Vert _{1+s,\omega (T)} = \Vert \eta u\Vert _{1+s} \lesssim \Vert \Delta (\eta u)\Vert _{-1+s}, \end{aligned}$$
(18)

since \(\eta u|_\Gamma = 0\) and \(\Delta (\eta u)\in H^{-1+s}(\Omega )\).

We consider the case where \(|\partial \omega (T)\cap \Gamma | = 0\). Then, \(\nabla (\eta u)\cdot {\varvec{n}}= 0\) on \(\Gamma \). Let \(v\in H^{1-s}(\Omega )\). Using \(v_{\omega (T)} := |\omega (T)|^{-1} \int _{\omega (T)} v \,dx\) and the product rule

$$\begin{aligned} \Delta (\eta u) = u\Delta \eta + 2\nabla \eta \cdot \nabla u -\eta f, \end{aligned}$$
(19)

we infer that

$$\begin{aligned} (\Delta (\eta u),v)&= (\Delta (\eta u),v-v_{\omega (T)}) = (\Delta (\eta u),v-v_{\omega (T)})_{\omega (T)} \\&= (u\Delta \eta + 2\nabla \eta \cdot \nabla u - \eta f,v-v_{\omega (T)})_{\omega (T)}. \end{aligned}$$

Note that \(\Vert v-v_{\omega (T)}\Vert _{\omega (T)} \lesssim h_T^{1-s}|v|_{1-s,\omega (T)}\) and therefore,

$$\begin{aligned} |(\Delta (\eta u),v)|&\lesssim h_T^{1-s} (\Vert \Delta \eta \Vert _{L^\infty (\omega (T))}\Vert u\Vert _{\omega (T)} + \Vert \nabla \eta \Vert _{L^\infty (\omega (T))}\Vert \nabla u\Vert _{\omega (T)}\\&\quad + \Vert \eta \Vert _{L^\infty (\omega (T))} \Vert f\Vert _{\omega (T)}) \Vert v\Vert _{1-s} \\&\lesssim (h_T^{-1-s}\Vert u\Vert _{\omega (T)} + h_T^{-s}\Vert \nabla u\Vert _{\omega (T)} + h_T^{1-s}\Vert f\Vert _{\omega (T)})\Vert v\Vert _{1-s}. \end{aligned}$$

Recall that we consider the case where \(\partial \omega (T)\) does not share a boundary facet. So the same estimates hold true when we replace u by \(u=u-u_{\omega (T)}\) since \(\eta (u-u_{\omega (T)})|_{\Gamma } = 0\) and \(\Delta (\eta (u-u_{\omega (T)}))\in H^{-1+s}(\Omega )\). Using \(\Vert u-u_{\omega (T)}\Vert _{\omega (T)}\lesssim h_T \Vert \nabla u\Vert _{\omega (T)}\), dividing by \(\Vert v\Vert _{1-s}\), and taking the supremum we get

$$\begin{aligned} h_T^s|\nabla u|_{s,T} \le h_T^s\Vert u-u_{\omega (T)}\Vert _{1+s,T} \lesssim h_T^s\Vert \Delta (\eta (u-u_{\omega (T)}))\Vert _{-1+s} \lesssim \Vert \nabla u\Vert _{\omega (T)} + h_T\Vert f\Vert _{\omega (T)}. \end{aligned}$$

Now we tackle the case where \(\partial \omega (T)\) includes at least one boundary facet \(E\in \mathcal {E}^\Gamma \). First, note that if a function w vanishes on one facet E, then

$$\begin{aligned} \Vert w\Vert _{\omega (T)} \lesssim h_T^r |w|_{r,\omega (T)}, \quad 0\le r\le 1. \end{aligned}$$

Second, recall that

$$\begin{aligned} \Vert \phi \Vert _{-1+s} = \sup _{0\ne v\in C_0^\infty (\Omega )} \frac{(\phi ,v)}{\Vert v\Vert _{1-s}}. \end{aligned}$$

Then, the product rule (19) and the properties of the cut-off function prove that

$$\begin{aligned} |(\Delta (\eta u),v)|&\lesssim (h_T^{-2}\Vert u\Vert _{\omega (T)} + h_T^{-1}\Vert \nabla u\Vert _{\omega (T)} + \Vert f\Vert _{\omega (T)})\Vert v\Vert _{\omega (T)} \quad \text {for all } v \in C_0^\infty (\Omega ). \end{aligned}$$

Using \(\Vert v\Vert _{\omega (T)}\lesssim h_T^{1-s}|v|_{1-s,\omega (T)}\), \(\Vert u\Vert _{\omega (T)}\lesssim h_T\Vert \nabla u\Vert _{\omega (T)}\) we further infer that

$$\begin{aligned} |(\Delta (\eta u),v)|&\lesssim h_T^{-s} (\Vert \nabla u\Vert _{\omega (T)} + h_T\Vert f\Vert _{\omega (T)})\Vert v\Vert _{1-s}. \end{aligned}$$

Dividing by \(\Vert v\Vert _{1-s}\) and taking the supremum, we conclude that

$$\begin{aligned} h_T^s|\nabla u|_{s,T} \le h_T^s\Vert u\Vert _{1+s,T} \lesssim h_T^s \Vert \Delta (\eta u)\Vert _{-1+s} \lesssim \Vert \nabla u\Vert _{\omega (T)} + h_T \Vert f\Vert _{\omega (T)}. \end{aligned}$$

This finishes the proof of Lemma 7. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Führer, T., Heuer, N. Optimal Quasi-diagonal Preconditioners for Pseudodifferential Operators of Order Minus Two. J Sci Comput 79, 1161–1181 (2019). https://doi.org/10.1007/s10915-018-0887-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0887-3

Keywords

Mathematics Subject Classification

Navigation