Skip to main content
Log in

Numerical Methods for the Wigner Equation with Unbounded Potential

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Unbounded potentials are always utilized to strictly confine quantum dynamics and generate bound or stationary states due to the existence of quantum tunneling. However, the existed accurate Wigner solvers are often designed for either localized potentials or those of the polynomial type. This paper attempts to solve the time-dependent Wigner equation in the presence of a general class of unbounded potentials by exploiting two equivalent forms of the pseudo-differential operator: integral form and series form (i.e., the Moyal expansion). The unbounded parts at infinities are approximated or modeled by polynomials and then a remaining localized potential dominates the central area. The fact that the Moyal expansion reduces to a finite series for polynomial potentials is fully utilized. In order to accurately resolve both the pseudo-differential operator and the linear differential operator, a spectral collocation scheme for the phase space and an explicit fourth-order Runge–Kutta time discretization are adopted. We are able to prove that the resulting full discrete spectral scheme conserves both mass and energy. Several typical quantum systems are simulated with a high accuracy and reliable estimation of macroscopically measurable quantities is thus obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kierig, E., Schnorrberger, U., Schietinger, A., Tomkovic, J., Oberthaler, M.K.: Single-particle tunneling in strongly driven double-well potentials. Phys. Rev. Lett. 100, 190405 (2008)

    Article  Google Scholar 

  2. Weiner, J.H., Tse, S.T.: Tunneling in asymmetric double-well potentials. J. Chem. Phys. 74, 2419–2426 (1981)

    Article  Google Scholar 

  3. Ka, J., Shin, S.: Tunneling dynamics in a double-well: numerical studies with thermal wavepackets. J. Mol. Struct. 623, 23–30 (2003)

    Article  Google Scholar 

  4. Pilar, F.L.: Elementary Quantum Chemistry, 2nd edn. Dover Publications, New York (2013)

    Google Scholar 

  5. Tucherman, M.E., Perez, A.P., Muser, M.H.: A comparative study of the centroid and ring-polymer molecular dynamics methods for approximating quantum time correlation functions from path integrals. J. Chem. Phys. 130, 184105 (2009)

    Article  Google Scholar 

  6. Wigner, E.: On the quantum corrections for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  MATH  Google Scholar 

  7. Tatarskiĭ, V.I.: The Wigner representation of quantum mechanics. Sov. Phys. Usp. 26, 311–327 (1983)

    Article  MathSciNet  Google Scholar 

  8. Kluksdahl, N.C., Kriman, A.M., Ferry, D.K., Ringhofer, C.: Self-consistent study of the resonant-tunneling diode. Phys. Rev. B 39, 7720–7735 (1989)

    Article  Google Scholar 

  9. Frensley, W.R.: Boundary conditions for open quantum systems driven far from equilibrium. Rev. Mod. Phys. 62, 745–791 (1990)

    Article  Google Scholar 

  10. Biegel, B.A.: Quantum Electronic Device Simulation. Ph.D. thesis, Stanford University (1997)

  11. Ringhofer, C.: A spectral method for the numerical simulation of quantum tunneling phenomena. SIAM J. Numer. Anal. 27, 32–50 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shao, S., Lu, T., Cai, W.: Adaptive conservative cell average spectral element methods for transient Wigner equation in quantum transport. Commun. Comput. Phys. 9, 711–739 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Xiong, Y., Chen, Z., Shao, S.: An advective-spectral-mixed method for time-dependent many-body Wigner simulations. SIAM J. Sci. Comput. 38, B491–B520 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer, Wien (1990)

    Book  MATH  Google Scholar 

  15. Schleich, W.P.: Quantum Optics in Phase Space. Wiley, Berlin (2011)

    MATH  Google Scholar 

  16. Thomann, A., BorzÌ, A.: Stability and accuracy of a pseudospectral scheme for the Wigner function equation. Numer. Methods Partial Differ. Equ. 33, 62–87 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Furtmaier, O., Succi, S., Mendoza, M.: Semi-spectral method for the Wigner equation. J. Comput. Phys. 305, 1015–1036 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bund, G.W., Tijero, M.C.: Mapping Wigner distribution functions into semiclassical distribution functions. Phys. Rev. A 61, 052114 (2000)

    Article  Google Scholar 

  19. Flügge, S.: Practical Quantum Mechanics. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  20. Kaczor, U., Klimas, B., Szydlowski, D., Woloszyn, M., Spasak, B.J.: Phase-space description of the coherent state dynamics in a small one-dimensional system. Open Phys. 14, 354–359 (2016)

    Article  Google Scholar 

  21. Gottlieb, S., Shu, C.W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67, 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sellier, J.M., Dimov, I.: Wigner functions, signed particles, and the harmonic oscillator. J. Comput. Electron. 14, 907–915 (2015)

    Article  Google Scholar 

  23. Somorjai, R.L., Hornig, D.F.: Double-minimum potentials in hydrogen-bonded solids. J. Chem. Phys. 36, 1980–1987 (1962)

    Article  Google Scholar 

  24. Pruess, S., Fulton, C.T.: Mathematical software for Sturm–Liouville problems. ACM Trans. Math. Softw. 19, 360–376 (1993)

    Article  MATH  Google Scholar 

  25. Shao, S., Cai, W., Tang, H.: Accurate calculation of Green’s function of the Schrödinger equation in a block layered potential. J. Comput. Phys. 219, 733–748 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Grabert, H., Weiss, U.: Quantum tunneling rates for asymmetric double-well systems. Phys. Rev. Lett. 54, 1605–1608 (1985)

    Article  Google Scholar 

  27. Zurek, W.H.: Decoherence and the transition from quantum to classical. Phys. Today 44, 36–44 (1991)

    Article  Google Scholar 

  28. Budaca, R.: Harmonic oscillator potential with a sextic anharmonicity in the prolate \(\gamma \)-rigid collective geometrical model. Phys. Lett. B 739, 56–61 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Heilbronner, E., Rutishauser, H., Gerson, F.: Eigenwerte, Eigenfunktionen und thermodynamische Funktionen des linearen Oszillators \(6^{\text{ ter }}\) Potenz. Helv. Chim. Acta 42, 2304–2314 (1959)

    Article  MATH  Google Scholar 

  30. Gerson, F.: Der eindimensionale Oszillator \(6^{\text{ ter }}\) Potenz als Basis für ein symmetrisches Doppelminimun-Problem. Helv. Chim. Acta 44, 471–476 (1961)

    Article  Google Scholar 

  31. Davis, M.J., Heller, E.J.: Comparisons of classical and quantum dynamics for initially localized states. J. Chem. Phys. 80, 5036–5048 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by grants from the National Natural Science Foundation of China (Nos. 11471025, 11421101, 11822102). Z. C. is partially supported by Peking University Weng Hongwu original research fund (No. WHW201501). Y. X. is partially supported by The Elite Program of Computational and Applied Mathematics for PhD Candidates in Peking University. The authors are grateful to the useful discussions with Wei Cai, Jian Liu and Jing Shi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sihong Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Xiong, Y. & Shao, S. Numerical Methods for the Wigner Equation with Unbounded Potential. J Sci Comput 79, 345–368 (2019). https://doi.org/10.1007/s10915-018-0853-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0853-0

Keywords

Mathematics Subject Classification

Navigation