Skip to main content
Log in

An \(\ell ^2-\ell ^q\) Regularization Method for Large Discrete Ill-Posed Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Ill-posed problems arise in many areas of science and engineering. Their solutions, if they exist, are very sensitive to perturbations in the data. Regularization aims to reduce this sensitivity. Typically, regularization methods replace the original problem by a minimization problem with a fidelity term and a regularization term. Recently, the use of a p-norm to measure the fidelity term, and a q-norm to measure the regularization term, has received considerable attention. The relative importance of these terms is determined by a regularization parameter. This paper discussed how the latter parameter can be determined with the aid of the discrepancy principle. We primarily focus on the situation when \(p=2\) and \(0<q\le 2\), where we note that when \(0<q<1\), the minimization problem may be non-convex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Brill, M., Schock, E.: Iterative solution of ill-posed problems—a survey, in Model Optimization in Exploration Geophysics, ed. A. Vogel, Vieweg, Braunschweig, pp. 17–37 (1987)

  2. Buccini, A.: Regularizing preconditioners by non-stationary iterated Tikhonov with general penalty term. Appl. Numer. Math. 116, 64–81 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai, J.-F., Chan, R.H., Shen, L., Shen, Z.: Simultaneously inpainting in image and transformed domains. Numer. Math. 112, 509–533 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai, J.-F., Chan, R.H., Shen, Z.: A framelet-based image inpainting algorithm. Appl. Comput. Harmonic Anal. 24, 131–149 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai, J.-F., Chan, R.H., Shen, Z.: Linearized Bregman iterations for frame-based image deblurring. SIAM J. Imaging Sci. 2, 226–252 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, J.-F., Osher, S., Shen, Z.: Split Bregman methods and frame based image restoration. Multiscale Model. Simul. 8, 337–369 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chan, R.H., Liang, H.X.: Half-quadratic algorithm for \(\ell _p\)-\(\ell _q\) problems with applications to TV-\(\ell _1\) image restoration and compressive sensing. In: Proceedings of Efficient Algorithms for Global Optimization Methods in Computer Vision, Lecture Notes in Comput. Sci. # 8293, pp. 78–103. Springer, Berlin (2014)

  8. Daniel, J.W., Gragg, W.B., Kaufman, L., Stewart, G.W.: Reorthogonalization and stable algorithms for updating the Gram–Schmidt QR factorization. Math. Comput. 30, 772–795 (1976)

    MathSciNet  MATH  Google Scholar 

  9. Donatelli, M., Hanke, M.: Fast nonstationary preconditioned iterative methods for ill-posed problems with application to image deblurring. Inverse Probl. 29, 095008 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Donatelli, M., Huckle, T., Mazza, M., Sesana, D.: Image deblurring by sparsity constraint on the Fourier coefficients. Numer. Algorithms 72, 341–361 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  12. Estatico, C., Gratton, S., Lenti, F., Titley-Peloquin, D.: A conjugate gradient like method for \(p\)-norm minimization in functional spaces. Numer. Math. 137, 895–922 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gazzola, S., Nagy, J.G.: Generalized Arnoldi–Tikhonov method for sparse reconstruction. SIAM J. Sci. Comput. 36, B225–B247 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gazzola, S., Novati, P., Russo, M.R.: On Krylov projection methods and Tikhonov regularization. Electron. Trans. Numer. Anal. 44, 83–123 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Hanke, M., Hansen, P.C.: Regularization methods for large-scale problems. Surv. Math. Ind. 3, 253–315 (1993)

    MathSciNet  MATH  Google Scholar 

  16. Hanke, M., Groetsch, C.W.: Nonstationary iterated Tikhonov regularization. J. Optim. Theory Appl. 98, 37–53 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hansen, P.C.: Rank Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  18. Hansen, P.C., Nagy, J.G., O’Leary, D.P.: Deblurring Images: Matrices, Spectra, and Filtering. SIAM, Philadelphia (2006)

    Book  MATH  Google Scholar 

  19. Hiriart-Urruty, J.-P., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer, New York (2004)

    MATH  Google Scholar 

  20. Huang, G., Lanza, A., Morigi, S., Reichel, L., Sgallari, F.: Majorization-minimization generalized Krylov subspace methods for \(\ell _p-\ell _q\) optimization applied to image restoration. BIT Numer. Math. 57, 351–378 (2017)

    Article  MATH  Google Scholar 

  21. Huang, G., Reichel, L., Yin, F.: Projected nonstationary iterated Tikhonov regularization. BIT Numer. Math. 56, 467–487 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang, J., Donatelli, M., Chan, R.H.: Nonstationary iterated thresholding algorithms for image deblurring. Inverse Probl. Imaging 7, 717–736 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lampe, J., Reichel, L., Voss, H.: Large-scale Tikhonov regularization via reduction by orthogonal projection. Linear Algebra Appl. 436, 2845–2865 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lanza, A., Morigi, S., Reichel, L., Sgallari, F.: A generalized Krylov subspace method for \(\ell _p-\ell _q\) minimization. SIAM J. Sci. Comput. 37, S30–S50 (2015)

    Article  MATH  Google Scholar 

  25. Rodríguez, P., Wohlberg, B.: Efficient minimization method for a generalized total variation functional. IEEE Trans. Image Process. 18, 322–332 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Serra-Capizzano, S.: A note on antireflective boundary conditions and fast deblurring models. SIAM J. Sci. Comput. 25, 1307–1325 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wolke, R., Schwetlick, H.: Iteratively reweighted least squares: algorithms, convergence analysis, and numerical comparisons. SIAM J. Sci. Stat. Comput. 9, 907–921 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their insightful comments that improved the presentation. The first author is a member of the INdAM Research group GNCS and his work is partially founded by the group. The second author is supported in part by NSF Grants DMS-1720259 and DMS-1729509.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Buccini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buccini, A., Reichel, L. An \(\ell ^2-\ell ^q\) Regularization Method for Large Discrete Ill-Posed Problems. J Sci Comput 78, 1526–1549 (2019). https://doi.org/10.1007/s10915-018-0816-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0816-5

Keywords

Mathematics Subject Classification

Navigation