Skip to main content
Log in

A Time-Spectral Algorithm for Fractional Wave Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper develops a high-accuracy algorithm for time fractional wave problems, which employs a spectral method in the temporal discretization and a finite element method in the spatial discretization. Moreover, stability and convergence of this algorithm are derived, and numerical experiments are performed, demonstrating the exponential decay in the temporal discretization error provided the solution is sufficiently smooth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Chen, C., Liu, F., Turner, I., Anh, V.: A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227(2), 886–897 (2007)

    Article  MathSciNet  Google Scholar 

  3. Chen, S., Shen, J., Wang, L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85(300), 1603–1638 (2016)

    Article  MathSciNet  Google Scholar 

  4. Ciarlet, P.: The Finite Element Method for Elliptic Problems. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    Book  Google Scholar 

  5. Deng, W.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47(1), 204–226 (2009)

    Article  MathSciNet  Google Scholar 

  6. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22(3), 558–576 (2006)

    Article  MathSciNet  Google Scholar 

  7. Gao, G., Sun, Z., Zhang, H.: A new fractional numerical differentiation formula to approximate the caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  Google Scholar 

  8. Huang, J., Tang, Y., Vzquez, L., Yang, J.: Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algorithms 64(4), 707–720 (2013)

    Article  MathSciNet  Google Scholar 

  9. Li, B., Luo, H., Xie, X.: Analysis of a time-stepping scheme for time fractional diffusion problems with nonsmooth data. Submitted. arXiv:1804.10552 (2018)

  10. Li, X., Xu, C.: A space–time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)

    Article  MathSciNet  Google Scholar 

  11. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  MathSciNet  Google Scholar 

  12. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  Google Scholar 

  13. Podlubny, I.: Fractional Eifferential Equations. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  14. Ren, J., Long, X., Mao, S., Zhang, J.: Superconvergence of finite element approximations for the fractional diffusion-wave equation. J. Sci. Comput. 72(3), 917–935 (2017)

    Article  MathSciNet  Google Scholar 

  15. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Philadelphia (1993)

    MATH  Google Scholar 

  16. Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms. Analysis and Applications. Springer, Berlin (2011)

    Book  Google Scholar 

  17. Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)

    Article  MathSciNet  Google Scholar 

  18. Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin (2007)

    MATH  Google Scholar 

  19. Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84(294), 1703–1727 (2012)

    Article  MathSciNet  Google Scholar 

  20. Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)

    Article  MathSciNet  Google Scholar 

  21. Yang, J., Huang, J., Liang, D., Tang, Y.: Numerical solution of fractional diffusion-wave equation based on fractional multistep method. Appl. Math. Model. 38(14), 3652–3661 (2014)

    Article  MathSciNet  Google Scholar 

  22. Yang, Y., Chen, Y., Huang, Y., Wei, H.: Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis. Comput. Math. Appl. 73(6), 1218–1232 (2017)

    Article  MathSciNet  Google Scholar 

  23. Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216(1), 264–274 (2006)

    Article  MathSciNet  Google Scholar 

  24. Yuste, S.B., Acedo, L.: An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42(5), 1862–1874 (2005)

    Article  MathSciNet  Google Scholar 

  25. Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation method. SIAM J. Sci. Comput. 36(1), A40–A62 (2014)

    Article  MathSciNet  Google Scholar 

  26. Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35(6), 2976–3000 (2013)

    Article  MathSciNet  Google Scholar 

  27. Zhang, Y., Sun, Z., Liao, H.: Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)

    Article  MathSciNet  Google Scholar 

  28. Zhang, Y., Zhao, X.: Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation. Siam J. Numer. Anal. 45(50), 1535–1555 (2012)

    Article  MathSciNet  Google Scholar 

  29. Zheng, M., Liu, F., Turner, I., Anh, V.: A novel high order space–time spectral method for the time fractional Fokker–Planck equation. Siam J. Sci. Comput. 37(2), A701–A724 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Luo.

Additional information

This work was supported by National Natural Science Foundation of China (11771312).

Appendix A: Weak Solution

Appendix A: Weak Solution

We call

$$\begin{aligned} u \in H^{(\gamma +1)/2}(0,T; L^2(\Omega )) \cap L^2(0,T; H_0^1(\Omega )) \end{aligned}$$

a weak solution to problem (1) if \( u(0) = u_0 \) and

(18)

for all \( v \in H^{(\gamma -1)/2}(0,T; L^2(\Omega )) \cap L^2(0,T; H_0^1(\Omega )) \).

To prove that problem (1) admits a unique weak solution, we first consider the following problem: given \( c_0 \), \( c_1 \in \mathbb R \) and \( g \in L^2(0,T) \), seek \( y \in H^\gamma (0,T) \) such that

$$\begin{aligned} D_{0+}^\gamma (y - c_0 - c_1t) + \lambda y = g, \end{aligned}$$
(19)

where \( \lambda \) is a positive constant such that \( \lambda \geqslant 1 \).

Lemma A.1

Suppose that \(v\in H^{(\gamma +1)/2}(0,T)\) and \(D_{0+}^{\gamma }v\in L^2(0,T)\), then

$$\begin{aligned} \left\| v \right\| _{H^\gamma (0,T)} \lesssim \left\| D_{0+}^\gamma v \right\| _{L^2(0,T)}. \end{aligned}$$
(20)

Proof

Since \(D_{0+}^\gamma v\in L^2(0,T)\), by [9, Lemmas A.4] we conclude that \(I_{0+}^\gamma D_{0+}^\gamma v\in H^{\gamma }(0,T)\) with

$$\begin{aligned} \left\| I_{0+}^\gamma D_{0+}^\gamma v \right\| _{H^\gamma (0,T)} \lesssim \left\| D_{0+}^\gamma v \right\| _{L^2(0,T)}. \end{aligned}$$
(21)

A simple calculation yields

$$\begin{aligned} v = c_0t^{\gamma -2} + c_1t^{\gamma -1} +I_{0+}^\gamma D_{0+}^\gamma v, \end{aligned}$$

which indicates that \(c_0=c_1=0\) by the fact \(v\in H^{(\gamma +1)/2}(0,T)\). Then (20) follows from (21). This completes the proof. \(\square \)

Lemma A.2

Suppose that \(v\in H^{(\gamma +1)/2}(0,T)\) with \(v(0)=0\), then we have the following properties.

  1. (a)

    It holds that

    $$\begin{aligned} \left( D_{0+}^\frac{\gamma +1}{2} v, D_{T-}^\frac{\gamma -1}{2} v' \right) _{L^2(0,T)} \sim \left\| v \right\| _{H^{(\gamma +1)/2}(0,T)}^2. \end{aligned}$$
    (22)
  2. (b)

    For any \(w\in H^{(\gamma -1)/2}(0,T)\), it holds that

    $$\begin{aligned} \left( D_{0+}^\frac{\gamma +1}{2} v, D_{T-}^\frac{\gamma -1}{2} w \right) _{L^2(0,T)}\lesssim \left\| v \right\| _{H^{(\gamma +1)/2}(0,T)} \left\| w \right\| _{H^{(\gamma -1)/2}(0,T)}. \end{aligned}$$
    (23)
  3. (c)

    For any \(\varphi \in C_0^{\infty }(0,T)\), it holds that

    $$\begin{aligned} \left\langle {D_{0+}^\gamma v, \varphi } \right\rangle = \left( D_{0+}^\frac{\gamma +1}{2} v, D_{T-}^\frac{\gamma -1}{2} \varphi \right) _{L^2(0,T)}. \end{aligned}$$
    (24)

Proof

Let us first prove (a). Since \(v\in H^{(\gamma +1)/2}(0,T)\) and \(v(0)=0\), we have

$$\begin{aligned} \left\| v' \right\| _{H^{(\gamma -1)/2}(0,T)}\sim \left\| v \right\| _{H^{(\gamma +1)/2}(0,T)}. \end{aligned}$$
(25)

In addition, a straightforward calculation gives

$$\begin{aligned} D_{0+}^\frac{\gamma +1}{2} v = D^{2}I_{0+}^{\frac{3-\gamma }{2}}I_{0+}v' = D^{2}I_{0+}^{\frac{5-\gamma }{2}}v' = D_{0+}^{\frac{\gamma -1}{2}}v'. \end{aligned}$$
(26)

So (22) follows from (25), (26) and Lemma 5.4.

Then let us prove (b). In view of (25), (26), using Lemma 5.4 yields (23).

Finally we prove (c). Observe that (26) implies \(I_{0+}^{\frac{3-\gamma }{2}}v'\in H^1(0,T)\), and a simple computation implies

$$\begin{aligned} \left( I_{0+}^{\frac{3-\gamma }{2}}v'\right) (t)\leqslant \frac{t^{\frac{1-\gamma }{2}}\left\| v' \right\| _{L^2(0,t)}}{\Gamma (\frac{3-\gamma }{2})\sqrt{2-\gamma }},\quad 0<t\leqslant T. \end{aligned}$$

Thus,

$$\begin{aligned} \left( I_{0+}^{\frac{3-\gamma }{2}}v'\right) (0) = 0. \end{aligned}$$

Using integration by parts gives

$$\begin{aligned} \begin{aligned} {}&\left\langle {D_{0+}^\gamma v, \varphi } \right\rangle = \left\langle {D^2I_{0+}^{2-\gamma } v, \varphi } \right\rangle \\&\quad = (I_{0+}^{2-\gamma } v, \varphi '')_{L^2(0,T)} = (I_{0+}^{3-\gamma } v', \varphi '')_{L^2(0,T)} \\&\quad = (I_{0+}^{\frac{3-\gamma }{2}}v' , I_{T-}^{\frac{3-\gamma }{2}}\varphi '')_{L^2(0,T)} =-(DI_{0+}^{\frac{3-\gamma }{2}}v' , I_{T-}^{\frac{3-\gamma }{2}}\varphi ')_{L^2(0,T)} \\&\quad = (D_{0+}^{\frac{\gamma -1}{2}}v' , D_{T-}^{\frac{\gamma -1}{2}}\varphi )_{L^2(0,T)} =(D_{0+}^{\frac{\gamma +1}{2}}v , D_{T-}^{\frac{\gamma -1}{2}}\varphi )_{L^2(0,T)} \end{aligned} \end{aligned}$$

for all \(\varphi \in C_0^\infty (0,T)\). This shows (24) and completes the proof of this lemma. \(\square \)

Lemma A.3

Problem (19) has a unique solution \( y \in H^\gamma (0,T) \), and y satisfies that \( y(0) = c_0 \) and

$$\begin{aligned} \left( D_{0+}^\frac{\gamma +1}{2} ( y - c_0 - c_1t ), \ D_{T-}^\frac{\gamma -1}{2} z \right) _{L^2(0,T)} + \lambda (y,z)_{L^2(0,T)} = (g,z)_{L^2(0,T)} \end{aligned}$$
(27)

for all \( z \in H^\frac{\gamma -1}{2} (0,T) \). Moreover,

$$\begin{aligned} \left\| y \right\| _{ H^\frac{\gamma +1}{2}(0,T) } + \lambda ^\frac{1}{2} \left\| y \right\| _{L^2(0,T)} \lesssim \left\| g \right\| _{L^2(0,T)} + \lambda ^\frac{1}{2} \left| c_0 \right| + \left| c_1 \right| . \end{aligned}$$
(28)

Proof

Set

$$\begin{aligned} b(z) := \left( g,z \right) _{L^2(0,T)} + \left( D_{0+}^\frac{\gamma +1}{2} (c_1t), D_{T-}^\frac{\gamma -1}{2} z \right) _{L^2(0,T)} - \lambda \left( c_0, z \right) _{L^2(0,T)} \end{aligned}$$

for all \( z \in H^\frac{\gamma -1}{2}(0,T) \). Since Lemma 5.4 implies \( b \in H^\frac{1-\gamma }{2}(0,T) \), Lemma A.2 and the well-known Lax-Milgram Theorem guarantee the unique existence of \( w \in H^\frac{\gamma +1}{2}(0,T) \) with \( w(0) = 0 \) such that

$$\begin{aligned} \left( D_{0+}^\frac{\gamma +1}{2} w, D_{T-}^\frac{\gamma -1}{2} z \right) _{L^2(0,T)} + \lambda (w, z)_{L^2(0,T)} = b(z) \end{aligned}$$
(29)

for all \( z \in H^\frac{\gamma -1}{2}(0,T) \). Using Lemma A.2 gives

$$\begin{aligned} \left\langle {D_{0+}^\gamma w, \varphi } \right\rangle&= \left( D_{0+}^\frac{\gamma +1}{2} w, D_{T-}^\frac{\gamma -1}{2} \varphi \right) _{L^2(0,T)}, \\ \left\langle {D_{0+}^\gamma (c_1t), \varphi } \right\rangle&= \left( D_{0+}^\frac{\gamma +1}{2} (c_1t), D_{T-}^\frac{\gamma -1}{2} \varphi \right) _{L^2(0,T)} \end{aligned}$$

for all \( \varphi \in C_0^\infty (0,T) \), so that from (29) it follows that

$$\begin{aligned} D_{0+}^\gamma ( w - c_1t ) = g - \lambda ( w+ c_0 ). \end{aligned}$$

Putting \( y := w + c_0 \) gives

$$\begin{aligned} D_{0+}^\gamma ( y - c_0 - c_1t ) + \lambda y = g, \end{aligned}$$

and then by Lemma A.1 and A.2 it is evident that y is the unique \( H^\gamma (0,T) \)-solution to problem (19). Also, \( y(0) = c_0 \) is obvious, and (27) follows directly from (29).

Now let us prove (28). Firstly, substituting \( z := y' \) into (27) and using integration by parts yield

$$\begin{aligned} \left( D_{0+}^\frac{\gamma +1}{2} ( y-c_0-c_1t ), \ D_{T-}^\frac{\gamma -1}{2} y' \right) _{L^2(0,T)} + \frac{\lambda }{2} y^2(T) = \frac{\lambda }{2} c_0^2+ (g,y')_{L^2(0,T)}. \end{aligned}$$

Therefore, Lemma A.2, the Cauchy–Schwarz inequality and the Young’s inequality with \( \epsilon \) imply

$$\begin{aligned} \left\| y - c_0 \right\| _{ H^\frac{\gamma +1}{2} (0,T) }^2 + \lambda y^2(T) \lesssim \left\| g \right\| _{L^2(0,T)}^2 + \lambda c_0^2 + c_1^2, \end{aligned}$$

and so

$$\begin{aligned} \left\| y \right\| _{ H^\frac{\gamma +1}{2}(0,T) } \lesssim \left\| g \right\| _{L^2(0,T)} + \lambda ^\frac{1}{2} \left| c_0 \right| + \left| c_1 \right| . \end{aligned}$$
(30)

Secondly, substituting \( z := y \) into (27) yields

$$\begin{aligned} \lambda \left\| y \right\| _{L^2(0,T)}^2 = \left( g,y \right) _{L^2(0,T)} - \left( D_{0+}^\frac{\gamma +1}{2} (y - c_0 - c_1t), \ D_{T-}^\frac{\gamma -1}{2} y \right) _{L^2(0,T)}, \end{aligned}$$

so that using Lemmas 5.4 and A.2, the Cauchy–Schwarz inequality and the Young’s inequality with \( \epsilon \) gives

$$\begin{aligned} \lambda \left\| y \right\| _{L^2(0,T)}^2 \lesssim \left\| y - c_0 - c_1t \right\| _{ H^\frac{\gamma +1}{2}(0,T) } \left\| y \right\| _{H^\frac{\gamma -1}{2}(0,T)} + \lambda ^{-1} \left\| g \right\| _{L^2(0,T)}^2, \end{aligned}$$

which, together with (30), yields

$$\begin{aligned} \lambda ^\frac{1}{2} \left\| y \right\| _{L^2(0,T)} \lesssim \left\| g \right\| _{L^2(0,T)} + \lambda ^\frac{1}{2} \left| c_0 \right| + \left| c_1 \right| . \end{aligned}$$
(31)

Finally, collecting (30), (31) proves (28), and thus proves this lemma. \(\square \)

Finally, by the above lemma and the Galerkin method, we readily conclude that problem (1) admits a unique weak solution indeed. We summarize the result as follows.

Theorem A.1

The weak solution u of problem (1) satisfies that \( u(0) = u_0 \) and that

$$\begin{aligned} \left( D_{0+}^\frac{\gamma +1}{2} ( u - u_0 - tu_1 ), \ D_{T-}^\frac{\gamma -1}{2} v \right) _{L^2(\Omega _T)} + (\nabla u,\nabla v)_{L^2(\Omega _T)} = (f,v)_{L^2(\Omega _T)} \end{aligned}$$
(32)

for all \( v \in H^\frac{\gamma -1}{2} (0,T;H_0^1(\Omega )) \). Furthermore, we have

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Luo, H. & Xie, X. A Time-Spectral Algorithm for Fractional Wave Problems. J Sci Comput 77, 1164–1184 (2018). https://doi.org/10.1007/s10915-018-0743-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0743-5

Keywords

Navigation