Skip to main content
Log in

Curvilinear Mesh Adaptation Using Radial Basis Function Interpolation and Smoothing

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a new iterative technique based on radial basis function (RBF) interpolation and smoothing for the generation and smoothing of curvilinear meshes from straight-sided or other curvilinear meshes. Our technique approximates the coordinate deformation maps in both the interior and boundary of the curvilinear output mesh by using only scattered nodes on the boundary of the input mesh as data sites in an interpolation problem. Our technique produces high-quality meshes in the deformed domain even when the deformation maps are singular due to a new iterative algorithm based on modification of the RBF shape parameter. Due to the use of RBF interpolation, our technique is applicable to both 2D and 3D curvilinear mesh generation without significant modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baker, T.: Element quality in tetrahedral meshes. In: 7th International Conference on Finite Element Models in Flow Problems, Huntsville, Alabama (1989)

  2. Bank, R.E., Xu, J.: An algorithm for coarsening unstructured meshes. Numer. Math. 73(1), 1–36 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bhatia, R., Lawrence, K.: Two-dimensional finite element mesh generation based on stripwise automatic triangulation. Comput. Struct. 36(2), 309–319 (1990). https://doi.org/10.1016/0045-7949(90)90131-K

    Article  Google Scholar 

  4. Caendish, J.C., Field, D.A., Frey, W.H.: An apporach to automatic three-dimensional finite element mesh generation. Int. J. Numer. Methods Eng. 21(2), 329–347 (1985)

    Article  Google Scholar 

  5. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3d objects with radial basis functions. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01, pp. 67–76. ACM, New York, NY, USA (2001). https://doi.org/10.1145/383259.383266

  6. Carr, J.C., Beatson, R.K., McCallum, B.C., Fright, W.R., McLennan, T.J., Mitchell, T.J.: Smooth Surface Reconstruction from Noisy Range Data. In: Proceedings of the 1st International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia, GRAPHITE ’03, pp. 119–ff. ACM, New York, NY, USA (2003)

  7. Chen, L.: Mesh smoothing schemes based on optimal delaunay triangulations. In: Proceedings of the 13th International Meshing Roundtable, IMR 2004, Williamsburg, Virginia, USA, September 19–22, 2004, pp. 109–120 (2004). http://imr.sandia.gov/papers/abstracts/Ch317.html

  8. Dannelongue, H., Tanguy, P.: Three-dimensional adaptive finite element computations and applications to non-Newtonian fluids. Int. J. Numer. Methods Fluids 13(2), 145–165 (1991)

    Article  MATH  Google Scholar 

  9. de Boer, A., van der Schoot, M.S., Bijl, H.: Mesh deformation based on radial basis function interpolation. Comput. Struct. 85(11–14), 784–795 (2007)

    Article  Google Scholar 

  10. de Cougny, H., Georges, M., Shephard, M.: Explicit node point mesh smoothing within the octree mesh generator. SCOREC Report: Scientific Computation Research Center. Program for Atuomated Modeling, Scientific Computation Research Center, Rensselaer Polytechnic Institute (1990). https://books.google.com/books?id=QtGHPgAACAAJ

  11. Driscoll, T., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions. Comput. Math. Appl. 43(3), 413–422 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fasshauer, G.E.: Green’s functions: taking another look at kernel approximation, radial basis functions and splines. In: Springer Proceedings in Mathematics, vol. 13, pp. 37–63. Springer (2011)

  13. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. Interdisciplinary Mathematical Sciences, vol. 6. World Scientific Publishers, Singapore (2007)

    Book  MATH  Google Scholar 

  14. Fasshauer, G.E., McCourt, M.J.: Stable evaluation of Gaussian radial basis function interpolants. SIAM J. Sci. Comput. 34, A737–A762 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Field, D.A.: Laplacian smoothing and delaunay triangulations. Commun. Appl. Numer. Methods 4(6), 709–712 (1988)

    Article  MATH  Google Scholar 

  16. Field, D.: A generic Delaunay triangulation algorithm for finite element meshes. Adv. Eng. Softw. Workstn. 13(5), 263–272 (1991). https://doi.org/10.1016/0961-3552(91)90031-X

    Article  MATH  Google Scholar 

  17. Field, D.A.: Qualitative measures for initial meshes. Int. J. Numer. Methods Eng. 47(4), 887–906 (2000)

    Article  MATH  Google Scholar 

  18. Flyer, N., Fornberg, B., Bayona, V., Barnett, G.A.: On the role of polynomials in rbf-fd approximations: I. Interpolation and accuracy. J. Comput. Phys. 321, 21–38 (2016). https://doi.org/10.1016/j.jcp.2016.05.026

    Article  MathSciNet  MATH  Google Scholar 

  19. Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput. 30, 60–80 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48, 853–867 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fornberg, B., Zuev, J.: The Runge phenomenon and spatially variable shape parameters in RBF interpolation. Comput. Math. Appl. 54, 379–398 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869–892 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fornberg, B., Lehto, E., Powell, C.: Stable calculation of Gaussian-based RBF-FD stencils. Comput. Math. Appl. 65, 627–637 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fukuda, J., Suhara, J.: Automatic mesh generation for FEA. In: Proceedings of International Conference on Finite Element Method, pp. 931–937 (1982)

  25. Fuselier, E., Wright, G.: Scattered data interpolation on embedded submanifolds with restricted positive definite kernels: Sobolev error estimates. SIAM J. Numer. Anal. 50(3), 1753–1776 (2012). https://doi.org/10.1137/110821846

    Article  MathSciNet  MATH  Google Scholar 

  26. Fuselier, E.J., Wright, G.B.: A high-order kernel method for diffusion and reaction-diffusion equations on surfaces. J. Sci. Comput. (2013). https://doi.org/10.1007/s10915-013-9688-x

    MathSciNet  MATH  Google Scholar 

  27. Gargallo-Peiro, A., Roca, X., Peraire, J., Sarrate, J.: Defining quality measures for mesh optimization on parameterized CAD surfaces. In:Jiao, X., Weill, J.C. (eds.) Proceedings of the 21st International Meshing Roundtable, pp. 85–102. Springer, Berlin (2013)

  28. Gargallo-Peiro, A., Roca, X., Peraire, J., Sarrate, J.: Defining quality measures for validation and generation of high-order tetrahedral meshes. In: Sarrate, J., Staten, M. (eds.) Proceedings of the 22nd International Meshing Roundtable, pp. 109–126. Springer, Berlin (2014)

  29. George, P., Borouchaki, H.: Delaunay Triangulation and Meshing: Application to Finite Elements. Butterworth-Heinemann, Oxford (1998). https://books.google.com/books?id=HZGfI61PSUQC

  30. Geuzaine, C., Johnen, A., Lambrechts, J., Remacle, J.F., Toulorge, T.: IDIHOM: Industrialization of High-Order Methods—A Top-Down Approach: Results of a Collaborative Research Project Funded by the European Union, 2010–2014, chap. The Generation of Valid Curvilinear Meshes, pp. 15–39. Springer, Cham (2015)

  31. Knupp, P.M.: Algebraic mesh quality metrics. SIAM J. Sci. Comput. 23(1), 193–218 (2001). https://doi.org/10.1137/S1064827500371499

    Article  MathSciNet  MATH  Google Scholar 

  32. Larsson, E., Fornberg, B.: A numerical study of some radial basis function based solution methods for elliptic PDEs. Comput. Math. Appl. 46(5–6), 891–902 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions. Comput. Math. Appl. 49, 103–130 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Macêdo, I., Gois, J.P., Velho, L.: Hermite interpolation of implicit surfaces with radial basis functions. In: 2009 XXII Brazilian Symposium on Computer Graphics and Image Processing, pp. 1–8 (2009)

  35. Malleswaran, M., Deborah, S.A., Manjula, S., Vaidehi, V.: Integration of INS and GPS using radial basis function neural networks for vehicular navigation. In: Control Automation Robotics Vision (ICARCV), 2010 11th International Conference, pp. 2427–2430 (2010)

  36. Marchandise, E., Piret, C., Remacle, J.F.: CAD and mesh repair with radial basis functions. J. Comput. Phys. 231(5), 2376–2387 (2012). https://doi.org/10.1016/j.jcp.2011.11.033

    Article  MathSciNet  MATH  Google Scholar 

  37. Miller, T.: Optimal good-aspect-ratio coarsening for unstructured meshes. In: SODA: ACM-SIAM Symposium on Discrete Algorithms (1997)

  38. Möller, P., Hansbo, P.: On advancing front mesh generation in three dimensions. Int. J. Numer. Methods Eng. 38(21), 3551–3569 (1995). https://doi.org/10.1002/nme.1620382102

    Article  MathSciNet  MATH  Google Scholar 

  39. Moxey, D., Green, M., Sherwin, S., Peiró, J.: An isoparametric approach to high-order curvilinear boundary-layer meshing. Comput. Methods Appl. Mech. Eng. 283, 636–650 (2015). Cited By 3

    Article  MathSciNet  MATH  Google Scholar 

  40. Moxey, D., Ekelschot, D., Keskin, Ü., Sherwin, S., Peiró, J.: High-order curvilinear meshing using a thermo-elastic analogy. Comput. Aided Des. 72, 130–139 (2016). (23rd International Meshing Roundtable Special Issue: Advances in Mesh Generation)

    Article  Google Scholar 

  41. Parthasarathy, V., Kodiyalam, S.: A constrained optimization approach to finite element mesh smoothing. Finite Elem. Anal. Des. 9(4), 309–320 (1991)

    Article  MATH  Google Scholar 

  42. Parthasarathy, V., Graichen, C., Hathaway, A.: A comparison of tetrahedron quality measures. Finite Elem. Anal. Des. 15(3), 255–261 (1994)

    Article  Google Scholar 

  43. Perronnet, A.: Triangulation par arbre-4 de triangles equilateraux et maximisation de la qualite. Tech. Rep. R 92015-Vol. 11; fasc. 3. Universit Pierre et Marie Curie (Paris) (1992). http://opac.inria.fr/record=b1031284

  44. Persson, P.-O., Peraire, J.: Curved mesh generation and mesh refinement using Lagrangian solid mechanics. In: Proceedings of the 47th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, Inc., Orlando, pp. 949:1–11 (2009)

  45. Persson, P.O., Strang, G.: A simple mesh generator in MATLAB. SIAM Rev. 46(2), 329–345 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Remacle, J.F., Toulorge, T., Lambrechts, J.: Robust untangling of curvilinear meshes. In: Proceedings of the 21st International Meshing Roundtable, chap., pp. 71–83. Springer, Berlin (2013)

  47. Sastry, S.P., Shontz, S.M., Vavasis, S.A.: A log-barrier method for mesh quality improvement and untangling. Eng. Comput. 30(3), 315–329 (2014)

    Article  Google Scholar 

  48. Sastry, S.P., Zala, V., Kirby, R.M.: Thin-plate-spline curvilinear meshing on a calculus-of-variations framework. Proc. Eng. 124, 135–147 (2015). (24th International Meshing Roundtable)

    Article  Google Scholar 

  49. Savitha, R., Suresh, S., Sundararajan, N.: A fully complex-valued radial basis function network and its learning algorithm. Int. J. Neural Syst. 19(04), 253–267 (2009). (PMID: 19731399)

    Article  Google Scholar 

  50. Schaback, R.: Multivariate interpolation by polynomials and radial basis functions. Constr. Approx. 21, 293–317 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  51. Shankar, V., Wright, G.B., Fogelson, A.L., Kirby, R.M.: A radial basis function (RBF)-finite difference method for the simulation of reaction–diffusion equations on stationary platelets within the augmented forcing method. Int. J. Numer. Methods Fluids 75(1), 1–22 (2014). https://doi.org/10.1002/fld.3880

    Article  MathSciNet  Google Scholar 

  52. Shankar, V., Wright, G., Kirby, R., Fogelson, A.: A radial basis function (RBF)-finite difference (FD) method for diffusion and reaction–diffusion equations on surfaces. J. Sci. Comput. 63(3), 745–768 (2015). https://doi.org/10.1007/s10915-014-9914-1

    Article  MathSciNet  MATH  Google Scholar 

  53. Staten, M.L., Owen, S.J., Shontz, S.M., Salinger, A.G., Coffey, T.S.: A comparison of mesh morphing methods for 3D shape optimization. In: Proceedings of the 20th International Meshing Roundtable, chap., pp. 293–311. Springer, Berlin (2012)

  54. Toulorge, T., Geuzaine, C., Remacle, J.F., Lambrechts, J.: Robust untangling of curvilinear meshes. J. Comput. Phys. 254, 8–26 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. Tsien, H.S.: Symmetrical Joukowsky airfoils in shear flow. Q. Appl. Math. 1(2), 130–148 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  56. Turner, M., Peir, J., Moxey, D.: A variational framework for high-order mesh generation. Proc. Eng. 163, 340–352 (2016). https://doi.org/10.1016/j.proeng.2016.11.069. (25th International Meshing Roundtable)

    Article  Google Scholar 

  57. Watabayshi, G., Galt, J.: An optimized triangular mesh system from random points. Numer. Grid Gen. Comput. Fluid Dyn. 437–438 (1986)

Download references

Acknowledgements

VZ was supported by NSF OCI-1148291 and NSF IIS-1212806. VS was supported by NSF DMS-1521748. SPS was supported in part by the NIH/NIGMS Center for Integrative Biomedical Computing Grant 2P41 RR0112553-12 and a Grant from the ExxonMobil corporation. RMK was supported in part by DMS-1521748 and W911NF-15-1-0222.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Shankar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zala, V., Shankar, V., Sastry, S.P. et al. Curvilinear Mesh Adaptation Using Radial Basis Function Interpolation and Smoothing. J Sci Comput 77, 397–418 (2018). https://doi.org/10.1007/s10915-018-0711-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0711-0

Keywords

Mathematics Subject Classification

Navigation