Skip to main content
Log in

An Improved Discrete Least-Squares/Reduced-Basis Method for Parameterized Elliptic PDEs

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

It is shown that the computational efficiency of the discrete least-squares (DLS) approximation of solutions of stochastic elliptic PDEs is improved by incorporating a reduced-basis method into the DLS framework. In particular, we consider stochastic elliptic PDEs with an affine dependence on the random variable. The goal is to recover the entire solution map from the parameter space to the finite element space. To this end, first, a reduced-basis solution using a weak greedy algorithm is constructed, then a DLS approximation is determined by evaluating the reduced-basis approximation instead of the full finite element approximation. The main advantage of the new approach is that one only need apply the DLS operator to the coefficients of the reduced-basis expansion, resulting in huge savings in both the storage of the DLS coefficients and the online cost of evaluating the DLS approximation. In addition, the recently developed quasi-optimal polynomial space is also adopted in the new approach, resulting in superior convergence rates for a wider class of problems than previous analyzed. Numerical experiments are provided that illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alnæs, M.S.: UFL: A Finite Element Form Language, Chap. 17. Springer, Berlin (2012)

    Google Scholar 

  2. Bachmayr, M., Cohen, A.: Kolmogorov widths and low-rank approximations of parametric elliptic pdes. Math. Comp. 86(304), 701–72 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beck, J., Nobile, F., Tamellini, L., Tempone, R.: Convergence of quasi-optimal stochastic galerkin methods for a class of pdes with random coefficients. Comput. Math. Appl. 67(4), 732–751 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beck, J., Tempone, R., Nobile, F., Tamellini, L.: On the optimal polynomial approximation of stochastic pdes by galerkin and collocation methods. Math. Models Methods Appl. Sci. 22(09), 1250,023 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Besselink, B., Tabak, U., Lutowska, A., van de Wouw, N., Nijmeijer, H., Rixen, D., Hochstenbach, M., Schilders, W.: A comparison of model reduction techniques from structural dynamics, numerical mathematics and systems and control. J. Sound Vib. 332(19), 4403–4422 (2013). https://doi.org/10.1016/j.jsv.2013.03.025. http://www.sciencedirect.com/science/article/pii/S0022460X1300285X

  6. Binev, P., Cohen, A., Dahmen, W., DeVore, R., Petrova, G., Wojtaszczyk, P.: Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43(3), 1457–1472 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boyaval, S., Le Bris, C., Lelièvre, T., Maday, Y., Nguyen, N.C., Patera, A.T.: Reduced basis techniques for stochastic problems. Arch. Comput. Methods Eng. 17(4), 435–454 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brenner, S.C., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  9. Chen, P., Quarteroni, A., Rozza, G.: Comparison between reduced basis and stochastic collocation methods for elliptic problems. J. Sci. Comput. 59(1), 187–216 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, P., Schwab, C.: Sparse-grid, reduced-basis bayesian inversion. Comput. Methods Appl. Mech. Eng. 297(Supplement C), 84 – 115 (2015). https://doi.org/10.1016/j.cma.2015.08.006. http://www.sciencedirect.com/science/article/pii/S0045782515002601

  11. Chen, P., Schwab, C.: Sparse-grid, reduced-basis bayesian inversion: Nonaffine-parametric nonlinear equations. J. Comput. Phys. 316(Supplement C), 470 – 503 (2016). https://doi.org/10.1016/j.jcp.2016.02.055. http://www.sciencedirect.com/science/article/pii/S0021999116001273

  12. Chkifa, A., Cohen, A., Christoph, S.: High-dimensional adaptive sparse polynomial interpolation and applications to parametric pdes. Found. Comput. Math. 14(4), 601–633 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chkifa, A., Cohen, A., Migliorati, G., Nobile, F., Tempone, R.: Discrete least squares polynomial approximation with random evaluations- application to parametric and stochastic elliptic pdes. ESAIM Math. Model. Numer. Anal. 3, 815–837 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chkifa, A., Cohen, A., Schwab, C.: Breaking the curse of dimensionality in sparse polynomial approximation of parametric pdes. Journal de Mathématiques Pures et Appliquées 103(2), 400–428 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cohen, A., Davenport, M.A., Leviatan, D.: On the stability and accuracy of least squares approximations. Found. Comput. Math. 13(5), 819–834 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cohen, A., DeVore, R.: Kolmogorov widths under holomorphic mappings. IMA J. Numer. Anal. 36(1), 1 (2016). https://doi.org/10.1093/imanum/dru066

    Article  MathSciNet  MATH  Google Scholar 

  17. Cohen, A., DeVore, R., Schwab, C.: Convergence rates of best n-term galerkin approximations for a class of elliptic spdes. Found, Comput. Math. 10(6), 615–646 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cohen, A., Devore, R., Schwab, C.: Analytic regularity and polynomial approximation of parametric and stochastic elliptic pde’s. Anal. Appl. 9(01), 11–47 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gunzburger, M.D., Webster, C.G., Zhang, G.: Stochastic finite element methods for partial differential equations with random input data. Acta Numer. 23, 521–650 (2014). https://doi.org/10.1017/S0962492914000075

    Article  MathSciNet  MATH  Google Scholar 

  20. Hesthaven, J.S., Rozza, G., Stamm, B.: Certified Reduced Basis Methods for Parametrized Partial Differential Equations. SpringerBriefs in Mathematics. Springer, Berlin (2015)

    MATH  Google Scholar 

  21. Hesthaven, J.S., Stamm, B., Zhang, S.: Efficient greedy algorithms for high-dimensional parameter spaces with applications to empirical interpolation and reduced basis methods. ESAIM Math. Model. Numer. Anal. 48(01), 259–283 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Migliorati, G., Nobile, F., von Schwerin, E., Tempone, R.: Approximation of quantities of interest in stochastic pdes by the random discrete \(\text{ l }\, \hat{}\,2\) projection on polynomial spaces. SIAM J. Sci. Comput. 35(3), A1440–A1460 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–2442 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Quarteroni, A., Rozza, G., Manzoni, A.: Certified reduced basis approximation for parametrized partial differential equations and applications. J. Math. Ind. 1(1), 1–49 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tran, H., Webster, C.G., Zhang, G.: Analysis of quasi-optimal polynomial approximations for parameterized pdes with deterministic and stochastic coefficients. Numerische Mathematik (2017). https://doi.org/10.1007/s00211-017-0878-6

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Gunzburger.

Additional information

This material is based upon work supported in part by the U.S. Air Force of Scientific Research under Grants 1854-V521-12 and FA9550-15-1-0001; the U.S. Defense Advanced Research Projects Agency, Defense Sciences Office under contract and Award HR0011619523 and 1868-A017-15; the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under contracts and Awards ERKJ259, ERKJ320, DE-SC0009324, and DE-SC0010678; by the National Science Foundation under the Award Numbers 1620027 and 1620280.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunzburger, M., Schneier, M., Webster, C. et al. An Improved Discrete Least-Squares/Reduced-Basis Method for Parameterized Elliptic PDEs. J Sci Comput 81, 76–91 (2019). https://doi.org/10.1007/s10915-018-0661-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0661-6

Keywords

Mathematics Subject Classification

Navigation