Skip to main content
Log in

Error Boundedness of Discontinuous Galerkin Methods with Variable Coefficients

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

For practical applications, the long time behaviour of the error of numerical solutions to time-dependent partial differential equations is very important. Here, we investigate this topic in the context of hyperbolic conservation laws and flux reconstruction schemes, focusing on the schemes in the discontinuous Galerkin spectral element framework. For linear problems with constant coefficients, it is well-known in the literature that the choice of the numerical flux (e.g. central or upwind) and the selection of the polynomial basis (e.g. Gauß–Legendre or Gauß–Lobatto–Legendre) affects both the growth rate and the asymptotic value of the error. Here, we extend these investigations of the long time error to variable coefficients using both Gauß–Lobatto–Legendre and Gauß–Legendre nodes as well as several numerical fluxes. We derive conditions guaranteeing that the errors are still bounded in time. Furthermore, we analyse the error behaviour under these conditions and demonstrate in several numerical tests similarities to the case of constant coefficients. However, if these conditions are violated, the error shows a completely different behaviour. Indeed, by applying central numerical fluxes, the error increases without upper bound while upwind numerical fluxes can still result in uniformly bounded numerical errors. An explanation for this phenomenon is given, confirming our analytical investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Modal bases are also possible [39], but we won’t consider these in this paper.

  2. Both names are used. In the DG community [12], the matrix is called mass matrix, whereas the name norm matrix is common for FD methods.

  3. For a modal basis see [39].

  4. We assume here a nodal basis using \(N+1\) points to represent polynomials of degree \(\le N\).

  5. A more detailed analysis can be found in [2, 3].

  6. We have an additional error term in Sect. 5, but this does not change the major steps of the study.

  7. More details can be found in the “Appendix”.

  8. Therefore, we need the initial and boundary conditions in the model problem (1).

  9. Details of main steps can also be found in the “Appendix”.

  10. This assumption is already formulated in [36, Theorem 3.4] to guarantee stability and conservation of the numerical schemes.

  11. \(\delta _0\) from Sect. 4, inequality (46).

  12. Since \(\varphi \in \mathbb {P}^N\) and if \(a\equiv 1\), the volume term is

    $$\begin{aligned} \left\langle \mathbb {I}^N(u^k), \partial _\xi \varphi ^k\right\rangle = \left( \underline{\mathbb {I}^N(u^k)}, \partial _\xi \underline{\varphi }^{k,T} \right) _N =\underline{\varphi }^k \underline{\underline{D}}^{T} \underline{\underline{M}} \underline{\mathbb {I}^N(u^k)} \end{aligned}$$

    and also the terms (63)–(65) simplify and can be brought together, see inter alia [20] for details.

References

  1. Abarbanel, S., Ditkowski, A., Gustafsson, B.: On error bounds of finite difference approximations to partial differential equations–temporal behavior and rate of convergence. J. Sci. Comput. 15(1), 79–116 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernardi, C., Maday, Y.: Properties of some weighted Sobolev spaces and application to spectral approximations. SIAM J. Numer. Anal. 26(4), 769–829 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernardi, C., Maday, Y.: Polynomial interpolation results in Sobolev spaces. J. Comput. Appl. Math. 43(1–2), 53–80 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bressan, A.: Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  5. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006). https://doi.org/10.1007/978-3-540-30726-6

    Book  MATH  Google Scholar 

  6. Carpenter, M.H., Nordström, J., Gottlieb, D.: A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148(2), 341–365 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, G., Ferrieres, X., Pernet, S.: A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell’s equations in time domain. J. Comput. Phys. 217(2), 340–363 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fernández, D.C.D.R., Hicken, J.E., Zingg, D.W.: Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids 95, 171–196 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fey, M.: Multidimensional upwinding. Part II: Decomposition of the Euler equations into advection equations. J. Comput. Phys. 143(1), 181–199 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fisher, T.C., Carpenter, M.H., Nordström, J., Yamaleev, N.K., Swanson, C.: Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions. J. Comput. Phys. 234, 353–375 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Funaro, D.: Polynomial Approximation of Differential Equations, vol. 8. Springer, Berlin (2008)

    MATH  Google Scholar 

  12. Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), A1233–A1253 (2013). https://doi.org/10.1137/120890144

    Article  MathSciNet  MATH  Google Scholar 

  13. Govil, N., Mohapatra, R.: Markov and Bernstein type inequalities for polynomials. J. Inequal. Appl. 3(4), 349–387 (1999)

    MathSciNet  MATH  Google Scholar 

  14. Gustafsson, B., Kreiss, H.O., Oliger, J.: Time-Dependent Problems and Difference Methods. Wiley, Hoboken (2013)

    Book  MATH  Google Scholar 

  15. Hesthaven, J., Kirby, R.: Filtering in Legendre spectral methods. Math. Comput. 77(263), 1425–1452 (2008). https://doi.org/10.1090/S0025-5718-08-02110-8

    Article  MathSciNet  MATH  Google Scholar 

  16. Hesthaven, J.S., Warburton, T.: Nodal high-order methods on unstructured grids: I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181(1), 186–221 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ketcheson, D.I.: Highly efficient strong stability-preserving Runge–Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30(4), 2113–2136 (2008). https://doi.org/10.1137/07070485X

    Article  MathSciNet  MATH  Google Scholar 

  18. Koley, U., Mishra, S., Risebro, N.H., Svärd, M.: Higher order finite difference schemes for the magnetic induction equations. BIT Numer. Math. 49(2), 375–395 (2009). https://doi.org/10.1007/s10543-009-0219-y

    Article  MathSciNet  MATH  Google Scholar 

  19. Kopriva, D.A., Gassner, G.J.: On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods. J. Sci. Comput. 44(2), 136–155 (2010). https://doi.org/10.1007/s10915-010-9372-3

    Article  MathSciNet  MATH  Google Scholar 

  20. Kopriva, D.A., Nordström, J., Gassner, G.J.: Error boundedness of discontinuous Galerkin spectral element approximations of hyperbolic problems. J. Sci. Comput. 72(1), 314–330 (2017). https://doi.org/10.1007/s10915-017-0358-2

    Article  MathSciNet  MATH  Google Scholar 

  21. Kreiss, H.O., Scherer, G.: Finite element and finite difference methods for hyperbolic partial differential equations. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 195–212. Academic Press, New York (1974)

    Chapter  Google Scholar 

  22. Manzanero, J., Rubio, G., Ferrer, E., Valero, E., Kopriva, D.A.: Insights on aliasing driven instabilities for advection equations with application to Gauss–Lobatto discontinuous Galerkin methods. J. Sci. Comput. 75, 1262–1281 (2017). https://doi.org/10.1007/s10915-017-0585-6

    Article  MathSciNet  MATH  Google Scholar 

  23. Mattsson, K., Nordström, J.: Summation by parts operators for finite difference approximations of second derivatives. J. Comput. Phys. 199(2), 503–540 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mattsson, K., Svärd, M., Nordström, J.: Stable and accurate artificial dissipation. J. Sci. Comput. 21(1), 57–79 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mishra, S., Svärd, M.: On stability of numerical schemes via frozen coefficients and the magnetic induction equations. BIT Numer. Math. 50(1), 85–108 (2010). https://doi.org/10.1007/s10543-010-0249-5

    Article  MathSciNet  MATH  Google Scholar 

  26. Nordström, J.: Conservative finite difference formulations, variable coefficients, energy estimates and artificial dissipation. J. Sci. Comput. 29(3), 375–404 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nordström, J.: Error bounded schemes for time-dependent hyperbolic problems. SIAM J. Sci. Comput. 30(1), 46–59 (2007). https://doi.org/10.1137/060654943

    Article  MathSciNet  MATH  Google Scholar 

  28. Nordström, J., Gustafsson, R.: High order finite difference approximations of electromagnetic wave propagation close to material discontinuities. J. Sci. Comput. 18(2), 215–234 (2003)

    Article  MATH  Google Scholar 

  29. Nordström, J., Ruggiu, A.A.: On conservation and stability properties for summation-by-parts schemes. J. Comput. Phys. 344, 451–464 (2017). https://doi.org/10.1016/j.jcp.2017.05.002

    Article  MathSciNet  MATH  Google Scholar 

  30. Öffner, P.: Zweidimensionale klassische und diskrete orthogonale Polynome und ihre Anwendung auf spektrale Methoden zur Lösung hyperbolischer Erhaltungsgleichungen. Ph.D. thesis, TU Braunschweig (2015)

  31. Öffner, P.: Error boundedness of correction procedure via reconstruction/flux reconstruction (2018). arXiv:1806.01575 [math.NA] (submitted)

  32. Öffner, P., Sonar, T.: Spectral convergence for orthogonal polynomials on triangles. Numer. Math. 124(4), 701–721 (2013). https://doi.org/10.1007/s00211-013-0530-z

    Article  MathSciNet  MATH  Google Scholar 

  33. Ranocha, H.: Comparison of some entropy conservative numerical fluxes for the Euler equations. J. Sci. Comput. 76, 216–242 (2017). https://doi.org/10.1007/s10915-017-0618-1

    Article  MathSciNet  MATH  Google Scholar 

  34. Ranocha, H.: Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods. GEM Int. J. Geomath. 8(1), 85–133 (2017). https://doi.org/10.1007/s13137-016-0089-9

    Article  MathSciNet  MATH  Google Scholar 

  35. Ranocha, H.: Generalised summation-by-parts operators and entropy stability of numerical methods for hyperbolic balance laws. Ph.D. thesis, TU Braunschweig (2018)

  36. Ranocha, H.: Generalised summation-by-parts operators and variable coefficients. J. Comput. Phys. 362, 20–48 (2018). https://doi.org/10.1016/j.jcp.2018.02.021

    Article  MathSciNet  MATH  Google Scholar 

  37. Ranocha, H., Öffner, P.: \(L_2\) stability of explicit Runge–Kutta schemes. J. Sci. Comput. 75(2), 1040–1056 (2018). https://doi.org/10.1007/s10915-017-0595-4

    Article  MathSciNet  MATH  Google Scholar 

  38. Ranocha, H., Öffner, P., Sonar, T.: Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 311, 299–328 (2016). https://doi.org/10.1016/j.jcp.2016.02.009

    Article  MathSciNet  MATH  Google Scholar 

  39. Ranocha, H., Öffner, P., Sonar, T.: Extended skew-symmetric form for summation-by-parts operators and varying Jacobians. J. Comput. Phys. 342, 13–28 (2017). https://doi.org/10.1016/j.jcp.2017.04.044

    Article  MathSciNet  MATH  Google Scholar 

  40. Ranocha, H., Ostaszewski, K., Heinisch, P.: InductionEq. A set of tools for numerically solving the nonlinear magnetic induction equation with Hall effect in OpenCL (2018). https://doi.org/10.5281/zenodo.1434409. https://github.com/MuMPlaCL/InductionEq

  41. Ranocha, H., Ostaszewski, K., Heinisch, P.: Numerical methods for the magnetic induction equation with Hall effect and projections onto divergence-free vector fields (2018). arXiv:1810.01397 [math.NA] (submitted)

  42. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  43. Steger, J.L., Warming, R.: Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods. J. Comput. Phys. 40(2), 263–293 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  44. Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Van Leer, B.: Flux-vector splitting for the Euler equation. In: Upwind and High-Resolution Schemes, pp. 80–89. Springer (1997)

  46. Vincent, P.E., Castonguay, P., Jameson, A.: A new class of high-order energy stable flux reconstruction schemes. J. Sci. Comput. 47(1), 50–72 (2011). https://doi.org/10.1007/s10915-010-9420-z

    Article  MathSciNet  MATH  Google Scholar 

  47. Vincent, P.E., Farrington, A.M., Witherden, F.D., Jameson, A.: An extended range of stable-symmetric-conservative flux reconstruction correction functions. Comput. Methods Appl. Mech. Eng. 296, 248–272 (2015). https://doi.org/10.1016/j.cma.2015.07.023

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang, Q., Shu, C.W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42(2), 641–666 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Philipp Öffner was supported by SNF Project (Number 175784) “Solving advection dominated problems with high order schemes with polygonal meshes: application to compressible and incompressible flow problems” and Hendrik Ranocha was supported by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) under Grant SO 363/14-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Öffner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Technical Explanation of the Investiagtion in Sect. 4

We presented the ideas how to reach (35) from (31). Applying the interpolation operator together with discrete norms results inFootnote 12

$$\begin{aligned} \left\langle \partial _t \mathbb {I}^N(u^k),\varphi ^k \right\rangle&= \left( \partial _t \underline{\mathbb {I}^N(u^k)}, \underline{\varphi }^k \right) _N \nonumber \\&\quad +\,\left\{ \left\langle \partial _t \mathbb {I}^N(u^k), \varphi ^k \right\rangle - \left( \partial _t \underline{\mathbb {I}^N(u^k)}, \underline{\varphi }^k \right) _N \right\} , \end{aligned}$$
(32)
$$\begin{aligned} \frac{1}{2}\left\langle a^k \mathbb {I}^N(u^k), \partial _\xi \varphi ^k\right\rangle&=\frac{1}{2} \left( \underline{\underline{a^k}} \underline{\mathbb {I}^N(u^k)} , \partial _\xi \underline{\varphi }^k\right) _N \nonumber \\&\quad +\frac{1}{2} \left\{ \left\langle a^k \mathbb {I}^N(u^k), \partial _\xi \varphi ^k\right\rangle - \left( \underline{\underline{a^k}} \underline{\mathbb {I}^N(u^k)} , \partial _\xi \underline{\varphi }^k\right) _N \right\} , \end{aligned}$$
(63)
$$\begin{aligned} \frac{1}{2}\left\langle a^k \partial _\xi \mathbb {I}^N(u^k),\varphi ^k\right\rangle&= \frac{1}{2} \left( \underline{\underline{a^k}} \partial _\xi \underline{\mathbb {I}^N(u^k) } , \underline{\varphi }^k \right) _N\nonumber \\&\quad +\frac{1}{2} \left\{ \left\langle a^k \partial _\xi \mathbb {I}^N(u^k) , \varphi ^k \right\rangle - \left( \underline{\underline{a^k}} \partial _\xi \underline{\mathbb {I}^N(u^k)} , \underline{\varphi }^k \right) _N \right\} , \end{aligned}$$
(64)
$$\begin{aligned} \frac{1}{2}\left\langle \mathbb {I}^N(u^k) \partial _\xi a^k, \varphi ^k \right\rangle&= \frac{1}{2} \left( \underline{\underline{\mathbb {I}^N(u^k)}} \partial _\xi \underline{a}^k , \underline{\varphi }^k \right) _N\nonumber \\&\quad +\frac{1}{2} \left\{ \left\langle \mathbb {I}^N(u^k) \partial _\xi a^k,\varphi ^k \right\rangle - \left( \underline{\underline{\mathbb {I}^N(u^k)}} \partial _\xi \underline{a}^k ,\underline{\varphi }^k \right) _N \right\} . \end{aligned}$$
(65)

It is well known [5, Section 5.4.3] that the integration error arising from the use of Gauß quadrature (Gauß–Legendre and Gauß–Lobatto–Legendre) decays spectrally fast. Indeed, for all \(\varphi \in \mathbb {P}^N\) and \(m\ge 1\),

$$\begin{aligned} \left| \left\langle u,\varphi \right\rangle -(\underline{u},\underline{\varphi })_N \right| \le C N^{-m}|u|_{H^{m,N-1}(-1,1)}||\varphi ||_{\mathbf{L}^2(-1,1)}, \end{aligned}$$

where C is a constant independent of m and u. The curly brackets of (32), (63)–(65) have to be reformulated. Using

$$\begin{aligned} \left\langle \partial _t \mathbb {I}^N(u^k), \varphi ^k \right\rangle - \left( \partial _t \underline{\mathbb {I}^N(u^k)}, \underline{\varphi }^k \right) _N= & {} \left\langle \underbrace{ \partial _t \left( \mathbb {I}^N(u^k)-P^m_{N-1} \left( \mathbb {I}^N(u^k)\right) \right) }_{=:Q(u^k)}, \varphi ^k \right\rangle \nonumber \\&- \left( \partial _t \left( \underline{\mathbb {I}^N(u^k)}-\underline{P^m_{N-1} \left( \mathbb {I}^N(u^k)\right) } \right) , \underline{\varphi }^k \right) _N , \end{aligned}$$
(66)

where \(P^m_{N-1}\) is the orthogonal projection of u onto \(\mathbb {P}^{N-1}\) using the inner product of \(H^m(e^k)\), gives a new formulation for (32). The projection operator is defined by the classical truncated Fourier series \(P^{N-1}u=\sum _{k=0}^{N-1} \hat{u}_k \varPhi _k\) up to order \(N-1\) where Sobolev type orthogonal polynomials \(\{\varPhi _k \} \) are used as basis functions in the Hilbert space \(H^m(e^k)\). The coefficients are calculated using the inner product of \(H^m(e^k)\) given by

$$\begin{aligned} \left\langle u,v\right\rangle _m=\sum _{k=0}^m \int _{e_k} \frac{{\text {d}}^k u}{{\text {d}}x^k}(x)\frac{{\text {d}}^k v}{{\text {d}}x^k}(x) {\text {d}}x. \end{aligned}$$

For more details about the projection operator and about approximation results, we strongly recommend [5, Section 5] and also [2, 3]. An analogous approach as (66) leads to terms with \(Q_1\) for (63), \(Q_2\) for (64) and \(Q_3\) for (65). The \(Q_j\) measure the projection error of a polynomial of degree N to a polynomial of degree \(N-1\). Since u and a are bounded, also these values have to be bounded. This values can be introduced and finally one obtains (35).

Later, in this section the error of the fluxes hase to be calulated. We obtain for the left and right boundary:

$$\begin{aligned} \text {left:} \quad -\mathbf{E}_L^1 \left( f^{\mathrm {num},1}_L - \frac{1}{2} a_L^1\mathbf{E}_L^1 \right)= & {} -\mathbf{E}_L^1 \left( \left( a_L^1\frac{0+\mathbf{E}_L^1 }{2} - \sigma a_L^1 \frac{\mathbf{E}_L^1 }{2} \right) -\frac{a_L^1 \mathbf{E}_L^1 }{2} \right) \\= & {} \frac{\sigma a_L^1}{2}\left( \mathbf{E}_L^1\right) ^2, \\ \text {right:}\quad \mathbf{E}_R^K \left( f^{\mathrm {num},K}_R - \frac{1}{2} a_R^K\mathbf{E}^K_R \right)= & {} \mathbf{E}^K_R \left( \left( a_R^K\frac{0+\mathbf{E}^K_R }{2} +\frac{1}{2} \sigma a_R^K \mathbf{E}^K_R \right) -\frac{\mathbf{E}^K_R a_R^K}{2}\right) \\= & {} \frac{\sigma a_R^K}{2} \left( \mathbf{E}^K_R \right) ^2. \end{aligned}$$

1.2 Technical Steps of the Development in Sect. 5

Here, we are presenting the main steps to reach (48).

$$\begin{aligned}&\frac{\varDelta x_k}{2} \left\langle \partial _t \mathbb {I}^N(u^k), \varphi ^k \right\rangle +\frac{1}{2} \Bigg ( a^k \mathbb {I}^N(u^k) \varphi ^k \Bigg |_{-1}^1 - \left\langle a^k \mathbb {I}^N(u^k),\partial _\xi \varphi ^k \right\rangle + \left\langle \partial _\xi \mathbb {I}^N(u^k), a^k \varphi ^k \right\rangle \\&\quad + {\left\langle \partial _\xi a^k , \varphi ^k \mathbb {I}^N(u^k)\right\rangle } \Bigg ) = -\frac{\varDelta x_k}{2} \left\langle \partial _t \varepsilon _p^k, \varphi ^k \right\rangle -\frac{1}{2} \left( a^k \varepsilon _p^k \varphi ^k \Bigg |_{-1}^1 \right) +\frac{1}{2} \left\langle a^k \varepsilon _p^k, \partial _\xi \varphi ^k \right\rangle \\&\quad -\frac{1}{2} \left\langle \partial _\xi \varepsilon _p^k, a^k \varphi ^k \right\rangle -\frac{1}{2} \left\langle \varphi ^k \varepsilon _p^k, \partial _\xi a^k \right\rangle . \end{aligned}$$

Integration-by-parts yields

$$\begin{aligned} -\frac{1}{2} \left( a^k \varepsilon _p^k \varphi ^k \Bigg |_{-1}^1 -\left\langle a^k\varepsilon _p^k, \partial _\xi \varphi ^k \right\rangle \right) = -\frac{1}{2}\left\langle \partial _\xi (a^k \varepsilon _p^k), \varphi ^k \right\rangle . \end{aligned}$$

With (32),(63)– (65), one obtains

$$\begin{aligned}&\frac{\varDelta x_k}{2} \left( \partial _t \underline{\mathbb {I}^N (u^k)}, \underline{\varphi }^k \right) _N +\underline{\varphi }^{k,T} \underline{\underline{R}}^{T} \underline{\underline{B}} \left( \underline{f}^{\mathrm {num},k}\left( \mathbb {I}^N(u^k)^-, \mathbb {I}^N(u^k)^+\right) - \frac{1}{2} \left( \underline{\underline{R}}\underline{a^k} \right) \cdot \left( \underline{\underline{R}} \underline{u} \right) \right) \nonumber \\&\qquad +\,\underbrace{\left( \frac{1}{2} a^k \mathbb {I}^N(u^k)\varphi ^k\Bigg |_{-1}^1 - \underline{\varphi }^{k,T} \underline{\underline{R}}^{T} \underline{\underline{B}} \left( \underline{f}^{\mathrm {num},k}\left( \mathbb {I}^N(u^k)^-, \mathbb {I}^N(u^k)^+\right) - \frac{1}{2} \left( \underline{\underline{R}}\underline{a^k} \right) \cdot \left( \underline{\underline{R}} \underline{u} \right) \right) \right) }_{=:\varepsilon _2^k(a^k)}\nonumber \\&\qquad - \frac{1}{2} \left( \underline{\underline{a^k}} \underline{\mathbb {I}^N(u^k)} , \partial _\xi \underline{\varphi }^k \right) _N +\frac{1}{2} \left( \partial _\xi \underline{\mathbb {I}^N(u^k)}, \underline{\underline{a^k}} \underline{\varphi }^k \right) _N +\frac{1}{2} \left( \partial _\xi \underline{a}^k , \underline{\underline{\mathbb {I}^N(u^k)}} \underline{\varphi }^k \right) _N \nonumber \\&\quad = \frac{\varDelta x_k}{2} \left\langle \hat{T}^k(u^k) , \varphi ^k\right\rangle +\frac{\varDelta x_k}{4} \left\langle Q_1(u^k), \partial _x \varphi ^k \right\rangle \nonumber \\&\qquad +\frac{\varDelta x_k}{4} \Big \{\left( \underline{Q(u^k)}, \underline{\varphi }^k \right) _N - \left( \underline{Q_1(u^k)}, \partial _x \underline{\varphi }^k \right) _N + { \left( \underline{Q_2(u^k)}, \underline{\underline{a}}^k \underline{\varphi }^k \right) _N } \nonumber \\&\qquad + \left( \partial _x \underline{a}^k, \underline{\underline{Q_3(u^k)}}\underline{\varphi }^k \right) _N \Big \} \end{aligned}$$
(47)

with

$$\begin{aligned} \hat{T}^(u^k)&:= -\Bigg \{\partial _t \varepsilon _p^k+\frac{1}{2} \left( \partial _x \left( a^k \varepsilon _p^k\right) +\varepsilon _p^k \partial _x a^k \partial _x \varepsilon _p^k \right) \\&\qquad +\frac{1}{2} \left( Q(u^k) +a^kQ_2(u^k) +Q_3(u^k) \partial _x a^k\right) \Bigg \}. \end{aligned}$$

We transposed every term in (29) and subtracted it from equation (47). Using \(\varepsilon _1^k=\mathbb {I}^N(u^k)-U^k\) yields

$$\begin{aligned}&\frac{\varDelta x_k}{2} \left( \partial _t \underline{\varepsilon }_1^k, \underline{\varphi }^k \right) +\underline{\varphi }^{k,T} \underline{\underline{R}}^{T} \underline{\underline{B}} \left( \underline{f}^{\mathrm {num},k}\left( (\varepsilon _1^k)^-, (\varepsilon _1^k)^+\right) - \frac{1}{2} \left( \underline{\underline{R}}\underline{a^k} \right) \cdot \left( \underline{\underline{R}} \varepsilon _1^k \right) \right) \\&\qquad +\,\varepsilon _2^k(a^k)- \frac{1}{2} \left( \underline{\underline{a^k}} \underline{\varepsilon }_1^k , \partial _\xi \underline{\varphi }^k \right) _N +\frac{1}{2} \left( \partial _\xi \underline{\varepsilon }_1^k , \underline{\underline{a^k}} \underline{\varphi }^k \right) _N +\frac{1}{2} \left( \partial _\xi \underline{a}^k , \underline{\underline{\varepsilon }}_1^k \underline{\varphi }^k \right) _N\\&\quad = \frac{\varDelta x_k}{2} \left\langle \hat{T}^k(u^k) , \varphi ^k\right\rangle +\frac{\varDelta x_k}{4} \left\langle Q_1(u^k), \partial _x \varphi ^k \right\rangle +\frac{\varDelta x_k}{4} \Big \{\left( \underline{Q(u^k)}, \underline{\varphi }^k \right) _N \\&\qquad -\, \left( \underline{Q_1(u^k)}, \partial _x \underline{\varphi }^k \right) _N + {\left( \underline{Q_2(u^k)}, \underline{\underline{a}}^k \underline{\varphi }^k \right) _N } + \left( \partial _x \underline{a}^k, \underline{\underline{Q_3(u^k)}}\underline{\varphi }^k \right) _N \Big \} . \end{aligned}$$

Putting \(\varphi ^k=\varepsilon _1^k\) results in the energy equation similar to (37):

$$\begin{aligned}&\frac{\varDelta x_k}{4} \frac{{\text {d}}}{{\text {d}}t}||\varepsilon _1^k||_N^2 + \underline{\varepsilon }_1^{k,T} \underline{\underline{R}}^{T} \underline{\underline{B}} \left( \underline{f}^{\mathrm {num},k}\left( (\varepsilon _1^k)^-, (\varepsilon _1^k)^+\right) - \frac{1}{2} \left( \underline{\underline{R}}\underline{a^k} \right) \cdot \left( \underline{\underline{R}} \underline{\varepsilon }_1^k \right) \right) \\&\qquad +\,\varepsilon _2^k(a^k)- \frac{1}{2} \left( \underline{\underline{a^k}} \underline{\varepsilon }_1^k , \partial _\xi \underline{\varepsilon }_1^k \right) _N +\frac{1}{2} \left( \partial _\xi \underline{\varepsilon }_1^k , \underline{\underline{a^k}} \underline{\varepsilon }_1^k \right) _N +\frac{1}{2} \left( \partial _\xi \underline{a}^k , \underline{\underline{\varepsilon }}_1^k \underline{\varepsilon }_1^k \right) _N\\&\quad = \frac{\varDelta x_k}{2} \left\langle \hat{T}^k(u^k) , \varepsilon _1^k\right\rangle +\frac{\varDelta x_k}{4} \left\langle Q_1(u^k), \partial _x \varepsilon _1^k \right\rangle \\&\qquad +\,\underbrace{\frac{\varDelta x_k}{4} \Big \{ \left( \underline{Q(u^k)}, \underline{\varepsilon }_1^k \right) _N -\left( \underline{Q_1(u^k)}, \partial _x \underline{\varepsilon }_1^k \right) _N +{ \left( \underline{Q_2(u^k)}, \underline{\underline{a}}^k\underline{\varepsilon }_1^k \right) _N } +\left( \partial _x \underline{a}^k, \underline{\underline{Q_3(u^k)}} \underline{\varepsilon }_1^k \right) _N\Big \}}_{\hat{Q}^k}. \end{aligned}$$

Together with (38), one obtains

$$\begin{aligned}&\frac{\varDelta x_k}{4} \frac{{\text {d}}}{{\text {d}}t}||\varepsilon _1^k||_N^2 +\underline{\varepsilon }_1^{k,T} \underline{\underline{R}}^{T} \underline{\underline{B}} \left( \underline{f}^{\mathrm {num},k}\left( (\varepsilon _1^k)^-, (\varepsilon _1^k)^+\right) -\frac{1}{2} \left( \underline{\underline{R}}\underline{a^k} \right) \cdot \left( \underline{\underline{R}} \underline{\varepsilon }_1^k \right) \right) \nonumber \\&\quad +\,\varepsilon _2^k(a^k) +\frac{1}{2} \left( \partial _\xi \underline{a}^k , \underline{\underline{\varepsilon }}_1^k \underline{\varepsilon }_1^k \right) _N = \frac{\varDelta x_k}{2} \left\langle \hat{T}^k(u^k) , \varepsilon _1^k\right\rangle +\frac{\varDelta x_k}{4} \left\langle Q_1(u^k), \partial _x \varepsilon _1^k \right\rangle +\hat{Q}^k. \end{aligned}$$
(67)

Summing this up over all elements results in

$$\begin{aligned}&\frac{1}{2} \frac{{\text {d}}}{{\text {d}}t} \sum _{k=1}^K \frac{\varDelta x_k}{2}||\varepsilon _1^k||_N^2+\sum _{k=1}^K \underline{\varepsilon }_1^{k,T} \underline{\underline{R}}^{T} \underline{\underline{B}} \Bigg (\underline{f}^{\mathrm {num},k}\left( (\varepsilon _1^k )^{-},(\varepsilon _1^k )^{+}\right) \\&\qquad - \frac{1}{2 } \left( \underline{\underline{R}}\underline{a^k} \right) \left( \underline{\underline{R}} \underline{\varepsilon }_1^k \right) \Bigg ) +\frac{1}{2} \sum _{k=1}^K \frac{\varDelta x_k}{2} {\left( \partial _x \underline{a}^k , \underline{\underline{\varepsilon }}_1^k \underline{\varepsilon }_1^k \right) _N } +\sum _{k=1}^K \frac{\varDelta x_k}{4} \varepsilon _2^k(a^k) \\&\quad = \sum _{k=1}^K\frac{\varDelta x_k}{2} \left\langle \hat{T}^k(u^k), \varepsilon _1^k\right\rangle + \sum _{k=1}^K\frac{\varDelta x_k}{4} \left\langle Q_1(u^k), \partial _x \varepsilon _1^k\right\rangle + \sum _{k=1}^K \hat{Q}^k . \end{aligned}$$

Applying the same approach like in Eqs. (41)–(42) and the fact that \(\varepsilon _1 \in \mathbb {P}^N\), it is\( ||\partial _x \underline{\varepsilon }_1^k||_N^2 \le c_1 N^2 ||\underline{\varepsilon }_1^k||_N^2\) and we get finally (48).

1.2.1 Calculating the Fluxes from Table 2

  • Split central flux \(f^{\mathrm {num}}(u_-, u_+)= \frac{a_-u_-+a_+u_+}{2}\): One obtains

    $$\begin{aligned}&\frac{1}{2}\left( a_R^{k-1}\mathbf{E}^{k-1}_R+a_L^{k}\mathbf{E}^k_L \right) \left( \mathbf{E}^{k-1}_R-\mathbf{E}_L^k \right) -\frac{1}{2} \left( a_R^{k-1}\left( \mathbf{E}_R^{k-1 } \right) ^2 -a_L^k \left( \mathbf{E}^k_L\right) ^2 \right) \\&\quad = \frac{1}{2} \left( a_R^{k-1} \left( \mathbf{E}_R^k\right) ^2-a_R^{k-1}\mathbf{E}_L^k \mathbf{E}^{k-1}_R + a_L^k \mathbf{E}^k_L \mathbf{E}^{k-1}_R-a_L^k \left( \mathbf{E}_L^k \right) ^2 \right) \\&\qquad -\frac{1}{2} \left( a_R^{k-1}\left( \mathbf{E}_R^{k-1 } \right) ^2 -a_L^k \left( \mathbf{E}^k_L \right) ^2 \right) = \frac{1}{2} \mathbf{E}_L^k \mathbf{E}_R^{k-1} \left( a_L^k-a_R^{k-1} \right) = 0 \end{aligned}$$

    and

    $$\begin{aligned} \begin{array}{ll} \text { left:} &{} -\mathbf{E}_L^1 \left( f^{\mathrm {num},1}_L -\frac{1}{2}a_L^1\mathbf{E}_L^1 \right) = -\mathbf{E}_L^1 \left( \frac{a^1_L}{2}\mathbf{E}_L^1-\frac{a_L^1}{2} \mathbf{E}_L^1 \right) =0, \\ \text { right:} &{} \mathbf{E}^K_R \left( f^{\mathrm {num},K}_R -\frac{1}{2}a_R^K \mathbf{E}^K_R \right) = \frac{1}{2} \left( \mathbf{E}_R^K \right) ^2 \left( a^K_R-a_R^K \right) =0 . \end{array} \end{aligned}$$
  • Edge based upwind flux \(f^{\mathrm {num}}(u_-,u_-)=a(x)u_-\): It is

    and

    $$\begin{aligned} \begin{array}{ll} \text { left:}&{} \ -\mathbf{E}_L^1 \left( f^{\mathrm {num},1}_L -\frac{1}{2}a_L^1\mathbf{E}_L^1 \right) =\frac{1}{2} \left( \mathbf{E}^1_L \right) a_L^1, \\ \text { right:}&{} \ \mathbf{E}^K_R \left( f^{\mathrm {num},K}_R -\frac{1}{2}a_R^K \mathbf{E}^K_R \right) =\left( \mathbf{E}^k_R \right) ^2 \left( a^K(x_R)-\frac{a_R^{K}}{2} \right) = \left( \mathbf{E}^k_R \right) ^2 \left( \frac{a_R^{K}}{2} \right) . \end{array} \end{aligned}$$
  • Split upwind flux \(f^{\mathrm {num}}(u_-,u_-)=a_-u_-\): It is

    where we used in the last step the assumption about the exactness of the interpolation and the continuity of a. At the boundaries we get

    $$\begin{aligned}&\text { left:}\qquad \frac{a_L^1 }{2} \left( \mathbf{E}^1_L\right) ^2,\\&\text { right:}\qquad \frac{a_R^K }{2} \left( \mathbf{E}^K_R\right) ^2. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öffner, P., Ranocha, H. Error Boundedness of Discontinuous Galerkin Methods with Variable Coefficients. J Sci Comput 79, 1572–1607 (2019). https://doi.org/10.1007/s10915-018-00902-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-00902-1

Keywords

Mathematics Subject Classification

Navigation