Skip to main content
Log in

Strong Convergence Analysis of the Stochastic Exponential Rosenbrock Scheme for the Finite Element Discretization of Semilinear SPDEs Driven by Multiplicative and Additive Noise

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider the numerical approximation of a general second order semilinear stochastic spartial differential equation (SPDE) driven by multiplicative and additive noise. Our main interest is on such SPDEs where the nonlinear part is stronger than the linear part also called stochastic reactive dominated transport equations. Most numerical techniques, including current stochastic exponential integrators lose their good stability properties on such equations. Using finite element for space discretization, we propose a new scheme appropriated on such equations, called stochastic exponential Rosenbrock scheme based on local linearization at every time step of the semi-discrete equation obtained after space discretization. We consider noise with finite trace and give a strong convergence proof of the new scheme toward the exact solution in the root-mean-square \(L^2\) norm. Numerical experiments to sustain theoretical results are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Full implicit or semi-implicit methods.

  2. The proposition indeed is general and provides some estimates for any semigroup and its generator.

  3. Think about for example a multiple of Laplace operator \(A=\alpha \varDelta \), when \(\alpha \rightarrow 0\).

References

  1. Baglama, J., Calvetti, D., Reichel, L.: Fast Léja points. Electron. Trans. Numer. Anal. 7, 124–140 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Carlos, M.M.: Weak exponential schemes for stochastic differential equations with additive noise. IMA J. Numer. Anal. 25, 486–506 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carlos, M.M.: Numerical solution of conservative finite-dimensional stochastic Schrödinger equations. Ann. Appl. Probab. 15, 2144–2171 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Elliot, C.M., Larsson, S.: Error estimates with smooth and nonsmooth data for a finite element method for the Cahn–Hilliard equation. Math. Comput. 58, 603–630 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Engel, K.J., Nagel, R.: One-Parameter Semigroup for Linear Evolution Equations. Springer, New York (2000)

    MATH  Google Scholar 

  6. Fujita, F., Suzuki, T.: Evolution problems (part 1). In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. 2, pp. 789–928. North-Holland, Amsterdam (1991)

    Google Scholar 

  7. Geiger, S., Lord, G., Tambue, A.: Exponential time integrators for stochastic partial differential equations in 3D reservoir simulation. Comput. Geosci. 16(2), 323–334 (2012)

    Article  MATH  Google Scholar 

  8. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

    Book  Google Scholar 

  9. Hochbruck, M., Lubich, C.: On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34(5), 1911–1925 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hochbruck, M., Ostermann, A., Schweitzer, J.: Exponential Rosenbrock-type methods. SIAM J. Numer. Anal. 47(1), 786–803 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hochbruck, M., Ostermann, A.: Explicit integrators of Rosenbrock-type. Oberwolfach Rep. 3(2), 1107–1110 (2006)

    Google Scholar 

  13. Jentzen, A., Kloeden, P.E.: Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive spacetime noise. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465(2102), 649–667 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jentzen, A., Kloeden, P.E., Winkel, G.: Efficient simulation of nonlinear parabolic SPDEs with additive noise. Ann. Appl. Probab. 21(3), 908–950 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jentzen, A., Röckner, M.: Regularity analysis for stochastic partial differential equations with nonlinear multiplicative trace class noise. J. Diff. Equat. 252(1), 114–136 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jentzen, A.: Pathwise Numerical approximations of SPDEs with additive noise under non-global Lipschitz coefficients. Potential Anal. 31(4), 375–404 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kovács, M., Larsson, S., Lindgren, F.: Strong convergence of the finite element method with truncated noise for semilinear parabolic stochastic equations with additive noise. Numer. Algorithms 53, 309–320 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kruse, R.: Optimal error estimates of Galerkin finite element methods for stochastic partial differential equations with multiplicative noise. IMA J. Numer. Anal. 34(1), 217–251 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kruse, R., Larsson, S.: Optimal regularity for semilinear stochastic partial differential equations with multiplicative noise. Electron. J. Probab. 17(65), 1–19 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Larsson, S.: Nonsmooth data error estimates with applications to the study of the long-time behavior of finite element solutions of semilinear parabolic problems Preprint 1992–36, Department of Mathematics, Chalmers University of Technology (1992). http://www.math.chalmers.se/stig/papers/index.html

  21. Lord, G.J., Tambue, A.: Stochastic exponential integrators for the finite element discretization of SPDEs for multiplicative & additive noise. IMA J. Numer. Anal. 2, 515–543 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mukam, J.D., Tambue, A.: A note on exponential Rosenbrock–Euler method for the finite element discretization of a semilinear parabolic partial differential equations. arXiv:1610.05525 (2016)

  23. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

    Book  MATH  Google Scholar 

  24. Prato, D., Zabczyk, G.J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  25. Printems, J.: On the discretization in time of parabolic stochastic partial differential equations. Math. Model. Numer. Anal. 35(6), 1055–1078 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol. 1905. Springer, Berlin (2007)

    MATH  Google Scholar 

  27. Ramos, J.I., García-López, C.M.: Piecewise-linearized methods for initial-value problems. Appl. Math. Comput. 82(2–3), 273–302 (1997)

    MathSciNet  MATH  Google Scholar 

  28. Schweitzer, J.: The Exponential Rosenbrock–Euler Method for Nonsmooth Initial Data. Karlsruhe Institute of Technology, preprint (2015)

  29. Schweitzer, J.: The Exponential Rosenbrock–Euler Method with Variable Time Step Sizes for Nonsmooth Initial Data. Technical report, Karlsruhe Institute of Technology (2014)

  30. Shardlow, T.: Weak convergence of a numerical method for a stochastic heat equation. BIT 43(1), 179–193 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tambue, A.: Efficient Numerical Schemes for Porous Media Flow. Ph.D. Thesis, Department of Mathematics, Heriot–Watt University (2010)

  32. Tambue, A.: An exponential integrator for finite volume discretization of a reaction–advection–diffusion equation. Comput. Math. Appl. 71(9), 1875–1897 (2016)

    Article  MathSciNet  Google Scholar 

  33. Tambue, A., Berre, I., Nordbotten, J.M.: Efficient simulation of geothermal processes in heterogeneous porous media based on the exponential Rosenbrock–Euler and Rosenbrock-type methods. Adv. Water Resour. 53, 250–262 (2013)

    Article  Google Scholar 

  34. Tambue, A., Ngnotchouye, J.M.T.: Weak convergence for a stochastic exponential integrator and finite element discretization of stochastic partial differential equation with multiplicative & additive noise. Appl. Numer. Math. 108, 57–86 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, X.: Weak error estimates of the exponential Euler scheme for semi-linear SPDE without Malliavin calculus. Discrete Contin. Dyn. Sys. Ser. A 36, 481–497 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, X.: Strong convergence rates of the linear implicit Euler method for the finite element discretization of SPDEs with additive noise. IMA J. Numer. Anal. doi:10.1093/imanum/drw016 (2016)

  37. Wang, X., Ruisheng, Q.: A note on an accelerated exponential Euler method for parabolic SPDEs with additive noise. Appl. Math. Lett. 46, 31–37 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yan, Y.: Galerkin finite element methods for stochastic parabolic partial differential equations. SIAM J. Numer. Anal. 43(4), 1363–1384 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yan, Y.: Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differential equation driven by an additive noise. BIT Numer. Math. 44(4), 829–847 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Academic Exchange Service (DAAD) (DAAD-Project 57142917) and the Robert Bosch Stiftung through the AIMS ARETE Chair programme (Grant No 11.5.8040.0033.0). Part of this work was done when Antoine Tambue visited TU Chemnitz. The visit was supported by TWAS-DFG Cooperation Visits Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Tambue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukam, J.D., Tambue, A. Strong Convergence Analysis of the Stochastic Exponential Rosenbrock Scheme for the Finite Element Discretization of Semilinear SPDEs Driven by Multiplicative and Additive Noise. J Sci Comput 74, 937–978 (2018). https://doi.org/10.1007/s10915-017-0475-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0475-y

Keywords

Mathematics Subject Classification

Navigation