Skip to main content
Log in

Tensor Methods for Solving Symmetric \({\mathcal {M}}\)-tensor Systems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Tensor systems involving tensor-vector products (or polynomial systems) are considered. We solve these tensor systems, especially focusing on symmetric \({\mathcal {M}}\)-tensor systems, by some tensor methods. A new tensor method is proposed based on the rank-1 approximation of the coefficient tensor. Numerical examples show that the tensor methods could be more efficient than the Newton method for some \({\mathcal {M}}\)-tensor systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bader, B., Schnabel, R.: Curvilinear linesearch for tensor methods. SIAM J. Sci. Comput. 25, 604–622 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bader, B.: Tensor-Krylov methods for solving large-scale systems of nonlinear equations. SIAM J. Numer. Anal. 43, 1321–1347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bader, B., Schnabel, R.: On the performance of tensor methods for solving ill-conditioned problems. SIAM J. Sci. Comput. 29, 2329–2351 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Batselier, K., Wong, N.: Symmetric tensor decomposition by an iterative eigendecomposition algorithm. J. Comput. Appl. Math. 308, 69–82 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bouaricha, A., Schnabel, R.: Algorithm 768: TENSOLVE: a software package for solving systems of nonlinear equations and nonlinear least-squares problems using tensor methods. ACM Trans. Math. Softw. 23, 174–195 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bouaricha, A.: Tensor methods for large, sparse unconstrained optimization. SIAM J. Optim. 7, 732–756 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brazell, M., Li, N., Navasca, C., Tamon, C.: Solving multilinear systems via tensor inversion. SIAM J. Matrix Anal. Appl. 34, 542–570 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang, K., Pearson, K., Zhang, T.: On eigenvalue problems of real symmetric tensors. J. Math. Anal. Appl. 350, 416–422 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Comon, P., Golub, G., Lim, L., Mourrain, B.: Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl. 30, 1254–1279 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ding, W., Qi, L., Wei, Y.: \({\cal{M}}\)-tensors and nonsingular \({\cal{M}}\)-tensors. Linear Algebra Appl. 439, 3264–3278 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ding, W., Wei, Y.: Solving multi-linear systems with \({\cal{M}}\)-tensors. J. Sci. Comput. 68, 689–715 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feng, D., Frank, P., Schnabel, R.: Local convergence analysis of tensor methods for nonlinear equations. Math. Progr. 62, 427–459 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feng, D., Schnabel, R.: Tensor methods for equality constrained optimization. SIAM J. Optim. 6, 653–673 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feng, D., Pulliam, T.: Tensor-GMRES method for large systems of nonlinear equations. SIAM J. Optim. 7, 757–779 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kolda, T., Bader, B.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, X., Ng, M.: Solving sparse non-negative tensor equations: algorithms and applications. Front. Math. China 10, 649–680 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Luo, Z., Qi, L., Xiu, N.: The sparsest solutions to Z-tensor complementarity problems. Optimi. Lett. 11, 471–482 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Qi, L., Luo, Z.: Tensor Analysis: Spectral Theory and Special Tensors. SIAM, Philadelphia (2017)

  20. Schnabel, R., Frank, P.: Tensor methods for nonlinear equations. SIAM J. Numer. Anal. 21, 815–843 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Steihaug, T., Suleiman, S.: Rate of convergence of higher order methods. Appl. Numer. Math. 67, 230–242 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wei, Y., Ding, W.: Theory and Computation of Tensors. Elsevier, Academic Press, London (2016)

    MATH  Google Scholar 

  23. Yang, Y., Yang, Q.: Further results for Perron-Frobenius theorem for nonnegative tensors. SIAM J. Matrix Anal. Appl. 31, 2517–2530 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, L., Qi, L., Zhou, G.: \({\cal{M}}\)-tensors and some applications. SIAM J. Matrix Anal. Appl. 35, 437–452 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank two referees for their helpful comments and Dr. Wei-Yang Ding for his useful discussions on this topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Min Wei.

Additional information

The work is supported by the research Grant MYRG2016-00077-FST from University of Macau and International Cooperation Project of Shanghai Municipal Science and Technology Commission under Grant 16510711200.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, ZJ., Jin, XQ. & Wei, YM. Tensor Methods for Solving Symmetric \({\mathcal {M}}\)-tensor Systems. J Sci Comput 74, 412–425 (2018). https://doi.org/10.1007/s10915-017-0444-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0444-5

Keywords

Mathematics Subject Classification

Navigation