Skip to main content
Log in

Optimally Convergent HDG Method for Third-Order Korteweg–de Vries Type Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop and analyze a new hybridizable discontinuous Galerkin method for solving third-order Korteweg–de Vries type equations. The approximate solutions are defined by a discrete version of a characterization of the exact solution in terms of the solutions to local problems on each element which are patched together through transmission conditions on element interfaces. We prove that the semi-discrete scheme is stable with proper choices of stabilization function in the numerical traces. For the linearized equation, we carry out error analysis and show that the approximations to the exact solution and its derivatives have optimal convergence rates. In numerical experiments, we use an implicit scheme for time discretization and the Newton–Raphson method for solving systems of nonlinear equations, and observe optimal convergence rates for both the linear and the nonlinear third-order equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Biswas, H.A., Rahman, A., Das, T.: An investigation on fiber optical solution in mathematical physics and its application to communication engineering. IJRRAS 6(3), 268–276 (2011)

    Google Scholar 

  2. Bona, J.L., Chen, H., Karakashian, O., Xing, Y.: Conservative, discontinuous Galerkin-methods for the generalized Korteweg–de Vries equation. Math. Comput. 82(283), 1401–1432 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bona, J.L., Chen, H., Sun, S.-M., Zhang, B.-Y.: Comparison of quarter-plane and two-point boundary value problems: the KDV-equation. Discrete Contin. Dyn. Syst. Ser. B 7(3), 465–495 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bona, J.L., Sun, S.-M., Zhang, B.-Y.: A nonhomogeneous boundary-value problem for the Korteweg–de Vries equation posed on a finite domain. Commun. Partial Differ. Equ. 28(7–8), 1391–1436 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bona, J.L., Sun, S.-M., Zhang, B.-Y.: A non-homogeneous boundary-value problem for the Korteweg–de Vries equation posed on a finite domain II. J. Differ. Equ. 247, 2558–2596 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Braginskii, S.I.: Transport processes in a plasma. Rev. Plasma Phys. 1, 205 (1965)

    Google Scholar 

  7. Buckingham, M.: Theory of acoustic attenuation, dispersion, and pulse propagation in unconsolidated granular materials including marine sediments. J. Acoust. Soc. Am. 102(5), 2579–2596 (1997)

    Article  Google Scholar 

  8. Chen, Y., Cockburn, B., Dong, B.: Superconvergent HDG methods for linear, stationary, third-order equations in one-space dimension. Math. Comput. 85, 2715–2742 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen, Y., Cockburn, B., Dong, B.: A new discontinuous Galerkin method, conserving the discrete \(H^2\)-norm, for third-order linear equations in one space dimension. IMA J. Numer. Anal. 36(4), 1570–1598 (2016)

    Article  MathSciNet  Google Scholar 

  10. Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 262, 699–730 (2008)

    MATH  MathSciNet  Google Scholar 

  11. Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77, 1887–1916 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cockburn, B., Fu, Z., Hungria, A., Ji, L., Sánchez, M., Sayas, F.-J.: Stormer–Numerov methods for the acoustic wave equation (submitted)

  13. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comput. 79, 1351–1367 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cockburn, B., Guzmán, J., Wang, H.: Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comput. 78, 1–24 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cockburn, B., Gopalakrishnan, J.: The derivation of hybridizable discontinuous Galerkin methods for Stokes flow. SIAM J. Numer. Anal. 47, 1092–1125 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Goubet, O., Shen, J.: On the dual Petrov–Galerkin formulation of the KdV equation on a finite interval. Adv. Differ. Equ. 12(2), 221–239 (2007)

    MATH  MathSciNet  Google Scholar 

  18. Holmer, J.: The initial-boundary value problem for the Korteweg–de Vries equation. Commun. Partial Differ. Equ. 31, 115–1190 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Horsley, S.A.R.: The KdV hierarchy in optics. J. Opt. 18, 085104 (2016)

    Article  Google Scholar 

  20. Hufford, C., Xing, Y.: Superconvergence of the local discontinuous Galerkin method for the linearized Korteweg–de Vries equation. J. Comput. Appl. Math. 255, 441–455 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kamchatnov, A.M., Shchesnovich, V.S.: Dynamics of Bose–Einstein condensates in cigar-shaped traps. Phys. Rev. A 70(02), 023604 (2004)

    Article  Google Scholar 

  22. Karakashian, O., Xing, Y.: A posteriori error estimates for conservative local discontinuous Galerkin methods for the generalized Korteweg–de Vries equation. Commun. Comput. Phys. 20, 250–278 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  23. Liu, H., Yan, J.: A local discontinuous Galerkin method for the Korteweg–de Vries equation with boundary effect. J. Comput. Phys. 215, 197–218 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection–diffusion equations. J. Comput. Phys. 228, 8841–8855 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Panda, N., Dawson, C., Zhang, Y., Kennedy, A.B., Westerink, J.J., Donahue, A.S.: Discontinuous Galerkin methods for solving Boussinesq–Green–Naghdi equations in resolving non-linear and dispersive surface water waves. J. Comput. Phys. 273, 572–588 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  26. Phillips, O.: Nonlinear dispersive waves. Annu. Rev. Fluid Mech. 6, 93–110 (1974)

    Article  MATH  Google Scholar 

  27. Samii, A., Panda, N., Michoski, C., Dawson, C.: A hybridized discontinuous Galerkin method for the nonlinear Korteweg–de Vries equation. J. Sci. Comput. 68, 191–212 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  28. Schamel, H.: A modified Korteweg–de Vries equation for ion acoustic waves due to resonant electrons. J. Plasma Phys. 9(3), 377–387 (1973)

    Article  MathSciNet  Google Scholar 

  29. Shukla, P.K., Eliasson, B.: Colloquium: nonlinear collective interactions in quantum plasmas with degenerate electron fluids. Rev. Mod. Phys. 83(3), 885–906 (2011)

    Article  Google Scholar 

  30. Skogestad, J.O., Kalisch, H.: A boundary value problem for the KdV equation: comparison of finite-difference and Chebyshev methods. Math. Comput. Simul. 80, 151–163 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Tagare, S.G.: Effect of ion temperature on propagation of ion-acoustic solitary waves of small amplitudes in collisionless plasma. Plasma Phys. 15(12), 1247 (1973)

    Article  Google Scholar 

  32. Tassi, E., Morrison, P.J., Waelbroeck, F.L., Grasso, D.: Hamiltonian formulation and analysis of a collisionless fluid reconnection model. Plasma Phys. Control. Fusion 50(8), 1–29 (2008)

    Article  Google Scholar 

  33. Tran, M.Q.: Ion acoustic solitons in a plasma—a review of their experimental properties and related theories. Phys. Scr. 20, 317–327 (1979)

    Article  Google Scholar 

  34. Xu, Y., Shu, C.-W.: Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection–diffusion and KdV equations. Comput. Methods Appl. Mech. Eng. 196, 3805–3822 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. Xu, Y., Shu, C.W.: Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50, 79–104 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  36. Yan, J., Shu, C.W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40, 769–791 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. Zabusky, N.J., Kruskal, M.D.: Interaction of “Solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the support of National Science Foundation Grant DMS-1419029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Dong.

Appendix: Implementation

Appendix: Implementation

To implement the HDG method (2.2), we use an implicit scheme for the discretization of the time derivative. One may use high order BDF or an implicit Runge–Kutta method for time discretization. Here, for simplicity we consider the backward Euler method with time-step \(\Delta t\). At time-level \(t_j\), inserting the definition of the numerical traces (2.2e) into (2.2a)–(2.2e), we obtain the equations

$$\begin{aligned}&({q}_h,{v}) + (u_h,v_x) - \left\langle \widehat{u}_h,{v}n \right\rangle = 0,\\&({p}_h,{z}) + (q_h,z_x) - \left\langle {q}_h+ \tau _{qu} (\widehat{u}_h-u_h)n, z n \right\rangle -\left\langle \tau _{qp} (\widehat{p}_h^{\,-}-p_h), z\right\rangle _{\partial {\mathcal T}_h^-} =0,\\&\quad \frac{1}{\Delta t}({u_h},{w}) -(p_h+F(u_h),w_x) + \left\langle p_h+\tau _{pu}(\widehat{u}_h-u_h)n, w n\right\rangle _{\partial {\mathcal T}_h^+}\quad \quad \\&\quad +\,\left\langle \widehat{p}_h^{\,-}, {w}n \right\rangle _{\partial {\mathcal T}_h^-} +\left\langle F(\widehat{u}_h) -\tau _{F}(\widehat{u}_h, u_h)(\widehat{u}_h -u_h)n, w n\right\rangle = (f,{w}) +\frac{1}{\Delta t}(u_h^{j-1}, w), \end{aligned}$$

from which \((u_h, q_h, p_h)\) can be locally solved in terms of \(f,\,\widehat{u}_h\) and \(\widehat{p}_h^{\,-}\), and the equations

$$\begin{aligned}&\left\langle q_h+\tau _{qu}(\widehat{u}_h-u_h)n, \mu \, n\right\rangle +\left\langle \tau _{qp} (\widehat{p}_h^{\,-}-p_h), \mu \right\rangle _{\partial {\mathcal T}_h^-}=\left\langle q_N, \mu \,n\right\rangle _{\partial \Omega _N},\\&\quad \left\langle \widehat{p}_h^{\,-}, \chi \, n\right\rangle _{\partial {\mathcal T}_h^-}+\left\langle p_h+\tau _{pu}(\widehat{u}_h-u_h)n, \chi \,n\right\rangle _{\partial {\mathcal T}_h^+}\\&\qquad +\,\left\langle F(\widehat{u}_h)-\tau _F(\widehat{u}_h, u_h)(\widehat{u}_h-u_h)n, \chi \,n\right\rangle =0, \end{aligned}$$

which determine the globally coupled unknowns \((\widehat{u}_h, \widehat{p}_h^{\,-})\).

Next, we apply the Newton–Raphson method to solve the above nonlinear system. Denoting the approximations at the current iteration by \((\bar{u}_h, \bar{q}_h, \bar{p}, \bar{\widehat{u}}_h, \bar{\widehat{p}}_h^{\,-})\in W_h^k\times W_h^k\times W_h^k\times M_h(u_D)\times \tilde{M}_h\), we want to find the increments \((\delta u_h, \delta q_h, \delta p_h, \delta \widehat{u}_h, \delta \widehat{p}_h^{\,-}) \in W_h^k\times W_h^k\times W_h^k\times M_h(0)\times \tilde{M}_h\) such that

$$\begin{aligned}&a_1(\delta q_h, v)+b_1(\delta u_h, v)+d_1(\delta \widehat{u}_h, v)= r_1(v),\\&a_2(\delta p_h, z)-b_1(z, \delta q_h)+c(\delta u_h, z)+d_2(\delta \widehat{u}_h, z)+e_2(\delta \widehat{p}_h^{\,-}, z)=r_2(z),\\&a_3(\delta u_h, w)+b_2(\delta p_h, w)+d_3(\delta \widehat{u}_h, w)+e_3(\delta \widehat{p}_h^{\,-}, w) = r_3(w),\\ \end{aligned}$$

and

$$\begin{aligned}&g_1(\delta p_h, \mu )+g_2(\delta q_h, \mu )+g_3(\delta u_h, \mu )+d_4(\delta \widehat{u}_h, \mu )+e_4(\delta \widehat{p}_h^{\,-}, \mu )= r_4(\mu ),\\&g_4(\delta p_h, \chi )+g_5(\delta u_h, \chi )+d_5(\delta \widehat{u}_h,\chi )+e_5(\delta \widehat{p}_h^{\,-}, \chi ) =r_5(\chi ), \end{aligned}$$

for any \((v, z, w, \mu ,\chi )\,\in \,W_h^{k}\times W_h^{k} \times W_h^{k}\times \tilde{M}_h\times M_h(0)\), where

$$\begin{aligned} a_1(\eta , v)&=(\eta , v), \quad b_1(\sigma , v)=(\sigma , v_x), \quad d_1(\lambda , v)=-\left\langle \lambda , v n\right\rangle ,\\a_2(\rho , z)&= (\rho , z)+\left\langle \tau _{qp} \rho , z\right\rangle _{\partial \mathcal T_h^-}, \quad c(\sigma , z)=\left\langle \tau _{qu} \sigma , z \right\rangle ,\\ d_2(\lambda , z)&= -\left\langle \tau _{qu}\lambda , z\right\rangle ,\quad e_2(\zeta , z)=-\left\langle \tau _{qp} \zeta , z\right\rangle _{\partial \mathcal T_h^-}, \\ a_3(\sigma , w)&=\frac{1}{\Delta t}(\sigma , w)-(F'(\bar{u}_h)\sigma , w_x)-\left\langle \tau _{pu}\sigma , w\right\rangle _{\partial \mathcal T_h^+} +\left\langle (\bar{\tau }_F-\partial _2\bar{\tau }_F(\bar{\widehat{u}}_h-\bar{u}_h))\sigma , w\right\rangle ,\\ b_2(\rho ,w)&= -(\rho , w_x)-\left\langle \rho , w \right\rangle _{\partial \mathcal T_h^+},\quad e_3(\zeta , w)=\left\langle \zeta , w\right\rangle _{\partial \mathcal T_h^-},\\ d_3(\lambda , w)&=\left\langle (F'(\bar{\widehat{u}}_h)n-\partial _1\bar{\tau }_F(\bar{\widehat{u}}_h-\bar{u}_h)-\bar{\tau }_F)\lambda , w\right\rangle +\left\langle \tau _{pu}\lambda ,w\right\rangle _{\partial \mathcal T_h^+},\\ g_1(\rho ,\mu )&=-\left\langle \tau _{qp}\rho ,\mu \right\rangle _{\partial \mathcal T_h^-},\quad g_2(\eta ,\mu )=\left\langle \eta ,\mu n\right\rangle ,\quad g_3(\sigma ,\mu )=-\left\langle \tau _{qu}\sigma , \mu \right\rangle ,\\ g_4(\rho , \chi )&= \left\langle \rho , \chi n\right\rangle _{\partial \mathcal T_h^+},\quad g_5(\sigma , \chi )=-\left\langle \tau _{pu}\sigma ,\chi \right\rangle _{\partial \mathcal T_h^+}+\left\langle (\bar{\tau }_F-\partial _2\bar{\tau }_F (\bar{\widehat{u}}_h-\bar{u}_h)) \sigma , \chi \right\rangle ,\\ d_4(\lambda , \mu )&=\left\langle \tau _{qu}\lambda ,\mu \right\rangle ,\quad e_4(\zeta ,\mu )=\left\langle \tau _{qp}\zeta , \mu \right\rangle _{\partial \mathcal T_h^-},\quad e_5(\zeta , \chi )=\left\langle \zeta ,\chi n\right\rangle _{\partial \mathcal T_h^-},\\ d_5(\lambda ,\chi )&=\left\langle \tau _{pu}\lambda , \chi \right\rangle _{\partial \mathcal T_h^+}+\left\langle (F'(\bar{\widehat{u}}_h)n-\partial _1 \bar{\tau }_F (\bar{\widehat{u}}_h-\bar{u}_h-\bar{\tau }_F))\lambda ,\chi \right\rangle ,\\ r_1(v)&=-(\bar{q}_h, v)-(\bar{u}_h, v_x)+\left\langle \bar{\widehat{u}}_h, vn\right\rangle ,\\ r_2(z)&=-(\bar{p}_h,z)+(\bar{q}_{hx}, z)+\left\langle \tau _{qu}(\bar{\widehat{u}}_h-\bar{u}_h),z\right\rangle +\left\langle \tau _{qp}(\bar{\widehat{p}}_h^{\,-}-\bar{p}_h), z\right\rangle _{\partial \mathcal T_h^-},\\ r_3(w)&=\left( f+\frac{1}{\Delta t}(u_h^{j-1}-\bar{u}_h), w\right) +({\bar{p}_h}+F(\bar{u}_h), w_x) -\left\langle \bar{\widehat{p}}^-_h, w\right\rangle _{\partial \mathcal T_h^-}\\&\quad -\,\left\langle \bar{p}_h n+\tau _{pu}(\bar{\widehat{u}}_h-\bar{u}_h), w \right\rangle _{\partial \mathcal T_h^+} -\left\langle F(\bar{\widehat{u}}_h)n-\bar{\tau }_F(\bar{\widehat{u}}_h-\bar{u}_h), w \right\rangle ,\\ r_4(\mu )&=\left\langle q_N, \mu n \right\rangle _{\partial \Omega _N}-\left\langle \bar{q}_h n+\tau _{qu}(\bar{\widehat{u}}_h-\bar{u}_h), \mu \right\rangle -\left\langle \tau _{qp}(\bar{\widehat{p}}_h^{\,-} -\bar{p}_h), \mu \right\rangle _{\partial \mathcal T_h^-},\\ r_5(\chi )&= -\left\langle \bar{\widehat{p}}_h^{\,-}, \chi n\right\rangle _{\partial \mathcal T_h^-} -\left\langle \bar{p}_h n+\tau _{pu}(\bar{\widehat{u}}_h-\bar{u}_h), \chi \right\rangle _{\partial \mathcal T_h^+}\\&\quad -\,\left\langle F(\bar{\widehat{u}}_h)-\bar{\tau }_F (\bar{\widehat{u}}_h-\bar{u}_h), \chi \right\rangle . \end{aligned}$$

Here we have used the notation \(\bar{\tau }_F:=\tau _F(\bar{\widehat{u}}_h, \bar{u}_h)\), and \(\partial _1 \bar{\tau }_F\) (respectively, \(\partial _2\bar{\tau }_F\)) denotes the first-order partial derivative of \(\tau _F\) with respect to the first argument (respectively, second argument) evaluated at \((\bar{\widehat{u}}_h, \bar{u}_h)\).

The discretization of the system above gives rise to matrix equations of the form

$$\begin{aligned} \begin{bmatrix} 0&\quad A_1&\quad B_1\\ A_2&\quad -B_1^T&\quad C \\ B_2&\quad 0&\quad A_3 \end{bmatrix} \begin{bmatrix} \delta p_h\\ \delta q_h\\ \delta u_h \end{bmatrix} + \begin{bmatrix} D_1&\quad 0\\ D_2&\quad E_2\\ D_3&\quad E_3 \end{bmatrix} \begin{bmatrix} \delta \widehat{u}_h\\ \delta \widehat{p}_h^{\,-} \end{bmatrix} =\begin{bmatrix} R_1\\ R_2\\ R_3 \end{bmatrix}, \end{aligned}$$
(5.1)

and

$$\begin{aligned} \begin{bmatrix} G_1&\quad G_2&\quad G_3\\ G_4&\quad 0&\quad G_5 \end{bmatrix} \begin{bmatrix} \delta p_h\\ \delta q_h\\ \delta u_h \end{bmatrix} +\begin{bmatrix} D_4&E_4\\ D_5&E_5 \end{bmatrix} \begin{bmatrix} \delta \widehat{u}_h\\ \delta \widehat{p}_h^{\,-} \end{bmatrix} = \begin{bmatrix} R_4\\ R_5 \end{bmatrix}. \end{aligned}$$
(5.2)

From (5.1), we get

$$\begin{aligned} \begin{bmatrix} \delta p_h\\ \delta q_h\\ \delta u_h \end{bmatrix} = \begin{bmatrix} 0&\quad A_1&\quad B_1\\ A_2&\quad -B_1^T&\quad C \\ B_2&\quad 0&\quad A_3 \end{bmatrix}^{-1} \left( \begin{bmatrix} R_1\\ R_2\\ R_3 \end{bmatrix} -\begin{bmatrix} D_1&\quad 0\\ D_2&\quad E_2\\ D_3&\quad E_3 \end{bmatrix} \begin{bmatrix} \delta \widehat{u}_h\\ \delta \widehat{p}_h^{\,-} \end{bmatrix} \right) \end{aligned}$$
(5.3)

We emphasize that the above inverse can be computed on each element independently of each other since the matrices \(A_1, A_2,A_3, B_1, B_2\) and C are block-diagonal owing to the discontinuous nature of the approximation spaces. Applying (5.3)–(5.2), we get the global linear system

$$\begin{aligned} \mathbb {K} \begin{bmatrix} \delta \widehat{u}_h\\ \delta \widehat{p}_h^{\,-} \end{bmatrix} =\mathbb {F}, \end{aligned}$$

where

$$\begin{aligned}&\mathbb {K}=\begin{bmatrix} D_4&\quad E_4\\ D_5&\quad E_5 \end{bmatrix} - \begin{bmatrix} G_1&\quad G_2&\quad G_3\\ G_4&\quad 0&\quad G_5 \end{bmatrix} \begin{bmatrix} 0&\quad A_1&\quad B_1\\ A_2&\quad -B_1^T&\quad C \\ B_2&\quad 0&\quad A_3 \end{bmatrix}^{-1} \begin{bmatrix} D_1&\quad 0\\ D_2&\quad E_2\\ D_3&\quad E_3 \end{bmatrix} \end{aligned}$$

and

$$\begin{aligned}&\mathbb {F}= \begin{bmatrix} R_4\\ R_5 \end{bmatrix} -\begin{bmatrix} G_1&\quad G_2&\quad G_3\\ G_4&\quad 0&\quad G_5 \end{bmatrix} \begin{bmatrix} 0&\quad A_1&\quad B_1\\ A_2&\quad -B_1^T&\quad C \\ B_2&\quad 0&\quad A_3 \end{bmatrix}^{-1} \begin{bmatrix} R_1\\ R_2\\ R_3 \end{bmatrix}. \end{aligned}$$

Therefore, the only globally coupled degrees of freedom are those associated with \(\delta \widehat{u}_h\) and \(\delta \widehat{p}_h^{\,-}\), which live only on element interfaces. Due to the one-dimensional setting of the KdV equation, the size and the bandwidth of the global linear system are independent of the degrees of polynomials used; it only depends on the number of subintervals in the mesh. Once \(\delta \widehat{u}_h\) and \(\delta \widehat{p}_h^{\,-}\) are obtained, \((\delta p_h, \delta q_h, \delta u_h)\) can be locally computed by using (5.3).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, B. Optimally Convergent HDG Method for Third-Order Korteweg–de Vries Type Equations. J Sci Comput 73, 712–735 (2017). https://doi.org/10.1007/s10915-017-0437-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0437-4

Keywords

Mathematics Subject Classification

Navigation