Skip to main content
Log in

Stochastic C-Stability and B-Consistency of Explicit and Implicit Milstein-Type Schemes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper focuses on two variants of the Milstein scheme, namely the split-step backward Milstein method and a newly proposed projected Milstein scheme, applied to stochastic differential equations which satisfy a global monotonicity condition. In particular, our assumptions include equations with super-linearly growing drift and diffusion coefficient functions and we show that both schemes are mean-square convergent of order 1. Our analysis of the error of convergence with respect to the mean-square norm relies on the notion of stochastic C-stability and B-consistency, which was set up and applied to Euler-type schemes in Beyn et al. (J Sci Comput 67(3):955–987, 2016. doi:10.1007/s10915-015-0114-4). As a direct consequence we also obtain strong order 1 convergence results for the split-step backward Euler method and the projected Euler–Maruyama scheme in the case of stochastic differential equations with additive noise. Our theoretical results are illustrated in a series of numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arnold, L.: Random Dynamical Systems. Springer Monographs in Mathematics. Springer, Berlin (1998)

    Book  Google Scholar 

  2. Beyn, W.-J., Isaak, E., Kruse, R.: Stochastic C-stability and B-consistency of explicit and implicit Euler-type schemes. J. Sci. Comput. 67(3), 955–987 (2016). doi:10.1007/s10915-015-0114-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Dekker, K., Verwer, J.: Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations, Volume 2 of CWI Monographs. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  4. Gaines, J.G., Lyons, T.J.: Random generation of stochastic area integrals. SIAM J. Appl. Math. 54(4), 1132–1146 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gorini, L.: Theorie und Simulation einer zwei-dimensionalen stochastischen Differentialgleichung. B.Sc. thesis, TU Berlin (2015)

  6. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II, Volume 14 of Springer Series in Computational Mathematics, 2nd edn. Springer, Berlin (1996). (Stiff and differential-algebraic problems)

    Book  MATH  Google Scholar 

  7. Higham, D.J., Mao, X., Stuart, A.M.: Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM J. Numer. Anal. 40(3), 1041–1063 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Higham, D.J., Mao, X., Szpruch, L.: Convergence, non-negativity and stability of a new Milstein scheme with applications to finance. Discrete Contin. Dyn. Syst. Ser. B 18(8), 2083–2100 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hutzenthaler, M., Jentzen, A.: Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients. Mem. Am. Math. Soc. 236(1112), 99 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467(2130), 1563–1576 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann. Appl. Probab. 22(4), 1611–1641 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations, 3rd edn. Springer, Berlin (1999)

    MATH  Google Scholar 

  13. Kruse, R.: Characterization of bistability for stochastic multistep methods. BIT Numer. Math. 52(1), 109–140 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Krylov, N.V.: On Kolmogorov’s equation for finite dimensional diffusions. In: Stochastic PDE’s and Kolmogorov Equations in Infinite Dimensions (Cetraro, 1998). Lecture Notes in Math., vol. 1715, pp. 1–63. Springer, Berlin (1999)

  15. Kumar, C., Sabanis, S.: On tamed Milstein schemes of SDEs driven by Lévy noise (2015) (preprint). arXiv:1407.5347v2

  16. Kumar, C., Sabanis, S.: On Milstein approximations with varying coefficients: the case of super-linear diffusion coefficients (2016) (preprint). arXiv:1601.02695

  17. Mao, X.: Stochastic Differential Equations and Their Applications. Horwood Publishing Series in Mathematics & Applications, Horwood Publishing Limited, Chichester (1997)

    MATH  Google Scholar 

  18. Milstein, G.N.: Approximate integration of stochastic differential equations. Teor. Verojatnost. i Primenen. 19, 583–588 (1974). (in Russian)

    MathSciNet  Google Scholar 

  19. Milstein, G.N.: Approximate integration of stochastic differential equations. Theory Probab. Appl. 19(3), 557–562 (1975). (translated by K. Durr)

    Article  Google Scholar 

  20. Milstein, G.N.: Numerical Integration of Stochastic Differential Equations, Volume 313 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht (1995). (Translated and revised from the 1988 Russian original)

    Google Scholar 

  21. Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics. Scientific Computation. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  22. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables, Volume 30 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000). (Reprint of the 1970 original)

    Book  MATH  Google Scholar 

  23. Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations, Volume 1905 of Lecture Notes in Mathematics. Springer, Berlin (2007)

    MATH  Google Scholar 

  24. Rydén, T., Wiktorsson, M.: On the simulation of iterated Itô integrals. Stoch. Process. Appl. 91(1), 151–168 (2001)

    Article  MATH  Google Scholar 

  25. Strehmel, K., Weiner, R., Podhaisky, H.: Numerik gewöhnlicher Differentialgleichungen: nichtsteife, steife und differential-algebraische Gleichungen. Studium. Springer Spektrum, Wiesbaden (2012) (2 rev. and ext. edition)

  26. Stuart, A.M., Humphries, A.R.: Dynamical Systems and Numerical Analysis, Volume 2 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  27. Wang, X., Gan, S.: The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients. J. Differ. Equ. Appl. 19(3), 466–490 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wiktorsson, M.: Joint characteristic function and simultaneous simulation of iterated Itô integrals for multiple independent Brownian motions. Ann. Appl. Probab. 11(2), 470–487 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, Z.: New explicit balanced schemes for SDEs with locally Lipschitz coefficients (2014) (preprint). arXiv:1402.3708

Download references

Acknowledgments

The authors would like to thank Martin Steinborn for bringing several typos to our attention. In addition, the first two authors are grateful for financial support by the DFG-funded CRC 701 ‘Spectral Structures and Topological Methods in Mathematics’. Further, this research was carried out by the third named author in the framework of Matheon, Project A25, supported by Einstein Foundation Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Kruse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beyn, WJ., Isaak, E. & Kruse, R. Stochastic C-Stability and B-Consistency of Explicit and Implicit Milstein-Type Schemes. J Sci Comput 70, 1042–1077 (2017). https://doi.org/10.1007/s10915-016-0290-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0290-x

Keywords

Mathematics Subject Classification

Navigation