Skip to main content
Log in

A Spectral Method for Fourth-Order Mixed Inhomogeneous Boundary Value Problem in Three Dimensions

  • Review Paper
  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we investigate spectral method for fourth- order mixed inhomogeneous boundary value problems in three dimensions. Some results on the three-dimensional Legendre approximation for fourth- order problem in Jacobi weighted Sobolev space are established, which improve and generalize the existing results, and play an important role in numerical solutions of partial differential equations. We also develop a lifting technique for fourth-order problems, with which we could handle mixed inhomogeneous boundary conditions easily. As examples of applications, spectral schemes are provided for three model problems with mixed inhomogeneous boundary conditions. The spectral accuracy in space of proposed algorithms are proved. Efficient implementations are presented. Numerical results demonstrate their high accuracy, and confirm the theoretical analysis well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Auteri, F., Quartapelle, L.: Galerkin–Legendre specral method for the 3D Helmholtz equation. J. Comput. Phys. 161, 454–483 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babus̆ka, I., Guo, B.Q.: Direct and inverse approximation theorems for the \(p\)-version of finite element method in the framework of weighted Besov spaces, Part I: approximability of functions in the weighted Besov spaces. SIAM J. Numer. Anal. 39, 1512–1538 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernard, B., Maday, Y.: Approximations spectrales de Problemes aux limites elliptiques. Springer, Berlin (1992)

    Google Scholar 

  4. Bernardi, C., Maday, Y.: Spectral methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, pp. 209–486. Elsevier, Amsterdam (1997)

    Google Scholar 

  5. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover Publication Inc., Mineda (2001)

    MATH  Google Scholar 

  6. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 2nd edn. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  7. Bialecki, B., Karageorghis, A.: A Legendre spectral Galerkin method for the biharmonic Dirichlet problem. SIAM J. Sci. Comput. 22, 1549–1569 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bjørstad, P.E., Tjøstheim, B.P.: Efficient algorithms for solving a fourth-order equation with spectral-Galerkin method. SIAM J. Sci. Comput. 18, 621–632 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)

    MATH  Google Scholar 

  10. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer-Verlag, Berlin (2007)

    MATH  Google Scholar 

  11. Chen, S.: Introduction to Partial Differential Equations. People Education Press, Beijing (1981)

    Google Scholar 

  12. Doha, E.H., Bhrawy, A.H.: Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials. Appl. Numer. Math. 58, 1224–1244 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deville, M.O., Fischer, P.F., Mund, E.H.: High-Order Methods for Incompressible Fuid Flow. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  14. Funaro, D.: Polynomial Approximations of Differential Equations. Springer, Berlin (1992)

    MATH  Google Scholar 

  15. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. SIAM-CBMS, Philadelphia (1977)

    Book  MATH  Google Scholar 

  16. Guo, B.: Approximation theory for the \(p\)-version of the finite element method in three dimensions, Part II: convergence of the \(p\)-version of the finite element method. SIAM J. Numer. Anal. 47, 2578–2611 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, B.: Spectral Methods and Their Applications. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  18. Guo, B., Jia, H.: Spectral method on quadrilaterals. Math. Comput. 79, 2237–2264 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo, B., Jie, S., Wang, L.: Optimal spectral-Galerkin methods using generalized Jacobi polynomials. J. Sci. Comput. 27, 305–322 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo, B., Wang, L.: Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J. Approx. Theory 128, 1–41 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, B., Wang, Z., Wan, Z., Chu, D.: Second order Jacobi approximation with applications to fourth-order differential equations. Appl. Numer. Math. 55, 480–502 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo, B., Wang, T.: A spectral method for mixed inhomogeneous boundary value problems on hexahedrons. Int. J. Numer. Anal. Model. 12, 664–683 (2015)

    MathSciNet  Google Scholar 

  23. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for CFD, 2nd edn. Oxford University Press, Oxford (2005)

    Book  MATH  Google Scholar 

  24. Shen, J.: Efficient spectral-Galerkin method I, Direct solvers of second and fourth order equations using Legendre polynomials. SIAM J. Sci. Comput. 15, 1489–1505 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  26. Wang, T., Guo, B., Li, W.: Spectral method for mixed inhomogeneous boundary value problems in three dimensions. J. Comput. Math. 30, 579–600 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yu, X., Guo, B.: Spectral method for fourth-order problems on quadrilaterals. J. Sci. Comput. (2015). doi:10.1007/s10915-015-0031-6

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-jun Wang.

Additional information

This work is supported in part by NSF of China N.11371123, N.11571151 and N.11171227, Fund of Henan Education Commission N.14B110021 and The Doctor Fund of Henan University of Science and Technology N.09001263.

Appendix

Appendix

We shall change the inhomogeneous boundary value problem (3.1) to a boundary value problem with homogeneous Dirichlet boundary condition (3.6) on \(\partial \Omega \). For this purpose, we introduce some auxiliary functions. Firstly, let

$$\begin{aligned} f_-(x)= & {} \dfrac{x^3-3x+2}{4},\quad f_+(x)=\dfrac{-x^3+3x+2}{4},\\ h_-(x)= & {} \dfrac{x^3-x^2-x+1}{4},\quad h_+(x)=\dfrac{x^3+x^2-x-1}{4}. \end{aligned}$$

It can be checked that

$$\begin{aligned}&f_-(1)=\partial _x f_-(\pm 1)=0, \quad f_-(-1)=1,\quad f_+(-1)=\partial _x f_+(\pm 1)=0, \quad f_+(1)=1,\nonumber \\&h_-(\pm 1)=\partial _x h_-(1)=0, \quad \partial _x h_-(-1)=1,\quad h_+(\pm 1)=\partial _x h_+(-1)=0,\quad \partial _x h_+(1)=1.\nonumber \\ \end{aligned}$$
(5.1)

Secondly, the following three function \(W^0_F,W^0_E,W^0_V\) corresponds to the six faces, the twelve edges and the eight vertices, respectively.

We have from (3.2)-(3.5) and (5.1) that

$$\begin{aligned} {W_F^0}({{\varvec{x}}})= & {} f_+(x_1)g^0_1(x_2,x_3)+f_+(x_2)g^0_2(x_1,x_3) +f_+(x_3)g^0_3(x_1,x_2)\\&+\,f_-(x_1)g^0_4(x_2,x_3)+f_-(x_2)g^0_5(x_1,x_3) +f_-(x_3)g^0_6(x_1,x_2)\\ {W_E^0}({{\varvec{x}}})= & {} -f_+(x_1)f_+(x_2)g^0_{31}(x_3)-f_-(x_1)f_+(x_2)g^0_{32}(x_3)\\&-\,f_-(x_1)f_-(x_2)g^0_{33}(x_3)-f_+(x_1)f_-(x_2)g^0_{34}(x_3)\\&-\,f_+(x_1)f_+(x_3)g^0_{21}(x_2)-f_-(x_1)f_+(x_3)g^0_{22}(x_2)\\&-\,f_-(x_1)f_-(x_3)g^0_{23}(x_2)-f_+(x_1)f_-(x_3)g^0_{24}(x_2)\\&-\,f_+(x_2)f_+(x_3)g^0_{11}(x_1)-f_-(x_2)f_+(x_3)g^0_{12}(x_1)\\&-\,f_-(x_2)f_-(x_3)g^0_{13}(x_1)-f_+(x_2)f_-(x_3)g^0_{14}(x_1)\\ {W_V^0}({{\varvec{x}}})= & {} f_+(x_1)f_+(x_2)f_+(x_3)g^0_{31}(1)+f_-(x_1)f_+(x_2)f_+(x_3)g^0_{32}(1)\\&+\,f_-(x_1)f_-(x_2)f_+(x_3)g^0_{33}(1)+f_+(x_1)f_-(x_2)f_+(x_3)g^0_{34}(1)\\&+\,f_+(x_1)f_+(x_2)f_-(x_3)g^0_{31}(-1)+f_-(x_1)f_+(x_2)f_-(x_3)g^0_{32}(-1)\\&+\,f_-(x_1)f_-(x_2)f_-(x_3)g^0_{33}(-1)+f_+(x_1)f_-(x_2)f_-(x_3)g^0_{34}(-1). \end{aligned}$$

And the following five function \(W^1_F,W^1_{Ei},W^1_{Vi},i=1,2\) corresponds to the norm differential of the six faces, the twelve edges and the eight vertices of boundary , respectively,

$$\begin{aligned} {W_F^1}({{\varvec{x}}})= & {} +h_+(x_1)g^1_1(x_2,x_3)+h_+(x_2)g^1_2(x_1,x_3)+h_+(x_3)g^1_3(x_1,x_2)\\&\quad -\,h_-(x_1)g^1_4(x_2,x_3)-h_-(x_2)g^1_5(x_1,x_3)-h_-(x_3)g^1_6(x_1,x_2)\\ {W_{E1}^1}({{\varvec{x}}})= & {} -h_+(x_1)f_+(x_2)g^1_1(1,x_3)+h_-(x_1)f_+(x_2) g^1_4(1,x_3)\\&\quad -\,h_+(x_1)f_-(x_2) g^1_1(-1,x_3)+h_-(x_1)f_-(x_2)g^1_4(-1,x_3)\\&\quad -\,h_+(x_1)f_+(x_3)g^1_1(x_2,1)+h_-(x_1)f_+(x_3)g^1_4(x_2,1)\\&\quad -\,h_+(x_1)f_-(x_3)g^1_1(x_2,-1)+h_-(x_1)f_-(x_3)g^1_4(x_2,-1)\\&\quad -\,h_+(x_2)f_+(x_3)g^1_2(x_1,1)+h_-(x_2)f_+(x_3)g^1_5(x_1,1)\\&\quad -\,h_+(x_2)f_-(x_3)g^1_2(x_1,-1)+h_-(x_2)f_-(x_3)g^1_5(x_1,-1)\\&\quad -\,f_+(x_1)h_+(x_2)g^1_2(1,x_3)+f_+(x_1)h_-(x_2)g^1_5(1,x_3)\\&\quad -\,f_-(x_1)h_+(x_2)g^1_2(-1,x_3)+f_-(x_1)h_-(x_2)g^1_5(-1,x_3)\\&\quad -\,f_+(x_1)h_+(x_3)g^1_3(1,x_2)+f_+(x_1)h_-(x_3)g^1_6(1,x_2)\\&\quad -\,f_-(x_1)h_+(x_3)g^1_3(-1,x_2)+f_-(x_1)h_-(x_3)g^1_6(-1,x_2)\\&\quad -\,f_+(x_2)h_+(x_3)g^1_3(x_1,1)+f_+(x_2)h_-(x_3)g^1_6(x_1,1)\\&\quad -\,f_-(x_2)h_+(x_3)g^1_3(x_1,-1)+f_-(x_2)h_-(x_3)g^1_6(x_1,-1)\\ {W_{V1}^1}({{\varvec{x}}})= & {} +h_+(x_1)f_+(x_2)f_+(x_3)g^1_1(1.1)-h_-(x_1)f_+(x_2)f_+(x_3)g^1_4(1.1)\\&\quad +\,h_+(x_1)f_+(x_2)f_-(x_3)g^1_1(1,-1)-h_-(x_1)f_+(x_2)f_-(x_3)g^1_4(1,-1)\\&\quad +\,h_+(x_1)f_-(x_2)f_+(x_3)g^1_1(-1,1)-h_-(x_1)f_-(x_2)f_+(x_3) g^1_4(-1,1)\\&\quad +\,h_+(x_1)f_-(x_2)f_-(x_3)g^1_1(-1,-1)-h_-(x_1)f_-(x_2)f_-(x_3)g^1_4(-1,-1)\\&\quad +\,f_+(x_1)h_+(x_2)f_+(x_3)g^1_2(1.1)-f_+(x_1)h_-(x_2)f_+(x_3)g^1_5(1.1)\\&\quad +\,f_+(x_1)h_+(x_2)f_-(x_3)g^1_2(1,-1)-f_+(x_1)h_-(x_2)f_-(x_3)g^1_5(1,-1)\\&\quad +\,f_-(x_1)h_+(x_2)f_+(x_3)g^1_2(-1,1)-f_-(x_1)h_-(x_2)f_+(x_3)g^1_5(-1,1)\\&\quad +\,f_-(x_1)h_+(x_2)f_-(x_3)g^1_2(-1,-1)-f_-(x_1)h_-(x_2)f_-(x_3)g^1_5(-1,-1)\\&\quad +\,f_+(x_1)f_+(x_2)h_+(x_3)g^1_3(1.1)-f_+(x_1)f_+(x_2)h_-(x_3)g^1_6(1.1)\\&\quad +\,f_+(x_1)f_-(x_2)h_+(x_3)g^1_3(1,-1)-f_+(x_1)f_-(x_2)h_-(x_3)g^1_6(1,-1)\\&\quad +\,f_-(x_1)f_+(x_2)h_+(x_3)g^1_3(-1,1)-f_-(x_1)f_+(x_2)h_-(x_3) g^1_6(-1,1)\\&\quad +\,f_-(x_1)f_-(x_2)h_+(x_3)g^1_3(-1,-1)-f_-(x_1)f_-(x_2)h_-(x_3)g^1_6(-1,-1) \end{aligned}$$
$$\begin{aligned} {W_{E2}^1}({{\varvec{x}}})= & {} -\,h_+(x_1)h_+(x_2) \partial _{x_2}g^1_1(1,x_3)-h_+(x_1)h_-(x_2)\partial _{x_2}g^1_1(-1,x_3)\\&+\,h_-(x_1)h_+(x_2)\partial _{x_2}g^1_4(1,x_3)+h_-(x_1)h_-(x_2)\partial _{x_2}g^1_4(-1,x_3)\\&-\,h_+(x_1)h_+(x_3)\partial _{x_1}g^1_3(1,x_2)+h_+(x_1)h_-(x_3)\partial _{x_1}g^1_6(1,x_2)\\&-\,h_-(x_1)h_+(x_3)\partial _{x_1}g^1_3(-1,x_2)+h_-(x_1)h_-(x_3)\partial _{x_1}g^1_3(-1,x_2)\\&-\,h_+(x_2)h_+(x_3) \partial _{x_3}g^1_2(x_1,1)-h_+(x_2)h_-(x_3)\partial _{x_3}g^1_2(x_1,-1)\\&+\,h_-(x_2)h_+(x_3) \partial _{x_3}g^1_5(x_1,1)+h_-(x_2)h_-(x_3)\partial _{x_3}g^1_5(x_1,-1)\\ {W_{V2}^1}({{\varvec{x}}})= & {} +\,h_+(x_1)h_+(x_2)f_+(x_3)\partial _{x_2}g^1_1(1.1)+h_+(x_1)h_-(x_2)f_+(x_3)\partial _{x_2}g^1_1(-1,1)\\&-\,h_-(x_1)h_+(x_2)f_+(x_3)\partial _{x_2}g^1_4(1.1)-h_-(x_1)h_-(x_2)f_+(x_3)\partial _{x_2}g^1_4(-1,1)\\&+\,h_+(x_1)h_+(x_2)f_-(x_3)\partial _{x_2}g^1_1(1,-1)+h_+(x_1)h_-(x_2)f_-(x_3)\partial _{x_2}g^1_1(-1,-1)\\&-\,h_-(x_1)h_+(x_2)f_-(x_3)\partial _{x_2}g^1_4(1,-1)-h_-(x_1)h_-(x_2)f_-(x_3)\partial _{x_2}g^1_4(-1,-1)\\&+\,h_+(x_1)f_+(x_2)h_+(x_3)\partial _{x_1}g^1_3(1.1)-h_+(x_1)f_+(x_2)h_-(x_3)\partial _{x_1}g^1_6(1.1)\\&+\,h_-(x_1)f_+(x_2)h_+(x_3)\partial _{x_1}g^1_3(-1,1)-h_-(x_1)f_+(x_2)h_-(x_3)\partial _{x_1}g^1_6(-1,1)\\&+\,h_+(x_1)f_-(x_2)h_+(x_3)\partial _{x_1}g^1_3(1,-1)-h_+(x_1)f_-(x_2)h_-(x_3)\partial _{x_1}g^1_6(1,-1)\\&+\,h_-(x_1)f_-(x_2)h_+(x_3)\partial _{x_1}g^1_3(-1,-1)-h_-(x_1)f_-(x_2)h_-(x_3)\partial _{x_1}g^1_6(-1,-1)\\&+\,f_+(x_1)h_+(x_2)h_+(x_3)\partial _{x_3}g^1_2(1.1)+f_+(x_1)h_+(x_2)h_-(x_3)\partial _{x_3}g^1_2(1,-1)\\&-\,f_+(x_1)h_-(x_2)h_+(x_3)\partial _{x_3}g^1_5(1.1)-f_+(x_1)h_-(x_2)h_-(x_3)\partial _{x_3}g^1_5(1,-1)\\&+\,f_-(x_1)h_+(x_2)h_+(x_3)\partial _{x_3}g^1_2(-1,1)+f_-(x_1)h_+(x_2)h_-(x_3)\partial _{x_3}g^1_2(-1,-1)\\&-\,f_-(x_1)h_-(x_2)h_+(x_3)\partial _{x_3}g^1_5(-1,1)-f_-(x_1)h_-(x_2)h_-(x_3)\partial _{x_3}g^1_5(-1,-1)\\&+\,h_+(x_1)h_+(x_2)h_+(x_3)\partial _{x_1}\partial _{x_2}g^1_3(1.1)-h_+(x_1)h_+(x_2)h_-(x_3)\partial _{x_1}\partial _{x_2}g^1_6(1.1)\\&+\,h_+(x_1)h_-(x_2)h_+(x_3)\partial _{x_1}\partial _{x_2}g^1_3(1,-1)\!-\!h_+(x_1)h_-(x_2)h_-(x_3)\partial _{x_1}\partial _{x_2}g^1_6(1,-1)\\&+\,h_-(x_1)h_+(x_2)h_+(x_3)\partial _{x_1}\partial _{x_2}g^1_3(-1,1)\!-\!h_-(x_1)h_+(x_2)h_-(x_3)\partial _{x_1}\partial _{x_2}g^1_6(-1,1)\\&+\,h_-(x_1)h_-(x_2)h_+(x_3)\partial _{x_1}\partial _{x_2}g^1_3(-1,-1)\\&-h_-(x_1)h_-(x_2)h_-(x_3)\partial _{x_1}\partial _{x_2}g^1_6(-1,-1). \end{aligned}$$

Finally, set

$$\begin{aligned} W_B^0({{\varvec{x}}})= & {} W_F^0({{\varvec{x}}}) +W_E^0({{\varvec{x}}})+W_V^0({{\varvec{x}}}),\\ W^1_B({{\varvec{x}}})= & {} W^1_F({{\varvec{x}}}) +W^1_{E1}({{\varvec{x}}})+W^1_{V1}({{\varvec{x}}})+ W^1_{E2}({{\varvec{x}}})+W^1_{V2}({\varvec{x}}). \end{aligned}$$

Then, define the function corresponding to the boundary \(\partial \Omega \) by

$$\begin{aligned} W_B({{\varvec{x}}})=W_B^0({{\varvec{x}}})+W^1_B({{\varvec{x}}}). \end{aligned}$$

It can be checked that \({W}_B({{\varvec{x}}})=W({{\varvec{x}}})\) and \(\partial _{n} {W}_B({{\varvec{x}}})=\partial _{n} W({{\varvec{x}}})\) on \(\partial \Omega \).

Next, we construct the function \({\overline{W}}_B({\varvec{x}})\), with which shall change the inhomogeneous boundary value problem (3.31) to a boundary value problem with homogeneous Dirichlet boundary condition on \(\partial ^*\Omega \). Let \(W_B^0({{\varvec{x}}})\) be the same as before, and the following five function \(W^1_F,W^1_{Ei},W^1_{Vi},i=1,2\) corresponds to the three faces, the nine edges and the seven vertices concerning the norm differential of boundary \(\partial ^*\Omega \), respectively. Also, we have from (3.2)–(3.5) and (5.1) that

$$\begin{aligned} {W_F^1}({{\varvec{x}}})= & {} +\,h_+(x_1)g^1_1(x_2,x_3)+h_+(x_2)g^1_2 (x_1,x_3)+h_+(x_3)g^1_3(x_1,x_2),\\ {W_{E1}^1}({{\varvec{x}}})= & {} -\,h_+(x_1)f_+(x_2)g^1_1(1,x_3) -h_+(x_1)f_-(x_2)g^1_1(-1,x_3)\\&-\,h_+(x_1)f_+(x_3)g^1_1(x_2,1) -h_+(x_1)f_-(x_3)g^1_1(x_2,-1)\\&-\,h_+(x_2)f_+(x_3)g^1_2(x_1,1) -h_+(x_2)f_-(x_3)g^1_2(x_1,-1)\\&-\,f_+(x_1)h_+(x_2)g^1_2(1,x_3) -f_-(x_1)h_+(x_2)g^1_2(-1,x_3)\\&-\,f_+(x_1)h_+(x_3)g^1_3(1,x_2) -f_-(x_1)h_+(x_3)g^1_3(-1,x_2)\\&-\,f_+(x_2)h_+(x_3)g^1_3(x_1,1) -f_-(x_2)h_+(x_3)g^1_3(x_1,-1),\\ {W_{V1}^1}({{\varvec{x}}})= & {} +\,h_+(x_1)f_+(x_2)f_+(x_3)g^1_1(1.1) +h_+(x_1)f_+(x_2)f_-(x_3)g^1_1(1,-1)\\&+\,h_+(x_1)f_-(x_2)f_+(x_3) g^1_1(-1,1) +h_+(x_1)f_-(x_2)f_-(x_3)g^1_1(-1-,1)\\&+\,f_+(x_1)h_+(x_2)f_+(x_3)g^1_2(1.1) +f_+(x_1)h_+(x_2)f_-(x_3)g^1_2(1,-1)\\&+\,f_-(x_1)h_+(x_2)f_+(x_3)g^1_2(-1,1) +f_-(x_1)h_+(x_2)f_-(x_3)g^1_2(-1,-1)\\&+\,f_+(x_1)f_+(x_2)h_+(x_3)g^1_3(1.1) +f_+(x_1)f_-(x_2)h_+(x_3)g^1_3(1,-1)\\&+\,f_-(x_1)f_+(x_2)h_+(x_3)g^1_3(-1,1) +f_-(x_1)f_-(x_2)h_+(x_3)g^1_3(-1,-1),\\ {W_{E2}^1}({{\varvec{x}}})= & {} -\,h_+(x_1)h_+(x_2) \partial _{x_2}g^1_1(1,x_3) -h_+(x_1)h_+(x_3)\partial _{x_1}g^1_3(1,x_2)\\&-\,h_+(x_2)h_+(x_3) \partial _{x_3}g^1_2(x_1,1),\\ {W_{V2}^1}({{\varvec{x}}})= & {} +\,h_+(x_1)h_+(x_2)f_+(x_3) \partial _{x_2}g^1_1(1.1) +h_+(x_1)h_+(x_2)f_-(x_3) \partial _{x_2}g^1_1(1,-1)\\&+\,h_+(x_1)f_+(x_2)h_+(x_3)\partial _{x_1}g^1_3(1.1) +h_+(x_1)f_-(x_2)h_+(x_3)\partial _{x_1}g^1_3(1,-1)\\&+\,f_+(x_1)h_+(x_2)h_+(x_3)\partial _{x_3}g^1_2(1.1) +f_-(x_1)h_+(x_2)h_+(x_3)\partial _{x_3}g^1_2(1,-1)\\&+\,h_+(x_1)h_+(x_2)h_+(x_3)\partial _{x_1}\partial _{x_2}g^1_3(1.1). \end{aligned}$$

Set

$$\begin{aligned} W^1_B({{\varvec{x}}})=W^1_F({{\varvec{x}}}) +W^1_{E1}({\varvec{x}})+W^1_{V1}({{\varvec{x}}})+W^1_{E2} ({{\varvec{x}}})+W^1_{V2}({{\varvec{x}}}). \end{aligned}$$

Then, define the function corresponding to the boundary \(\partial \Omega \) and \(\partial ^*\Omega \) by

$$\begin{aligned} \overline{W}_B({{\varvec{x}}})=W_B^0({{\varvec{x}}})+W^1_B({{\varvec{x}}}). \end{aligned}$$

It can be checked that \({\overline{W}}_B({{\varvec{x}}})=W({{\varvec{x}}})\) on \(\partial \Omega \) and \(\partial _{n} {\overline{W}}_B({\varvec{x}})=\partial _{n} W({{\varvec{x}}})\) on \(\partial ^* \Omega \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Tj. A Spectral Method for Fourth-Order Mixed Inhomogeneous Boundary Value Problem in Three Dimensions. J Sci Comput 67, 1247–1271 (2016). https://doi.org/10.1007/s10915-015-0106-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0106-4

Keywords

Mathematics Subject Classification

Navigation