Skip to main content
Log in

Spectral Method for Fourth-Order Problems on Quadrilaterals

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we investigate the spectral method for fourth-order problems defined on quadrilaterals. Some results on the Legendre irrational orthogonal approximations are established, which play important roles in the related spectral method on quadrilaterals. As examples of applications, we provide spectral schemes for a model problem with various boundary conditions. The spectral accuracy of suggested algorithms are proved. Numerical results demonstrate the effectiveness of suggested algorithms, and confirm the analysis well. The approximation results and techniques developed in this paper are also applicable to other fourth-order problems defined on quadrilaterals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Belhachmi, Z., Bernardi, C., Karageorghis, A.: Spectral element discretization of the circular driven cavity, part II: the bilaplacian equation. SIAM J. Numer. Anal. 38, 1926–1960 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernardi, C., Maday, Y.: Spectral methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, pp. 209–486. Elsevier, Amsterdam (1997)

    Google Scholar 

  3. Bernardi, C., Maday, Y., Rapetti, F.: Discretisations Variationnelles de Problemes aux Limites Elliptique, Collection: Mathematique et Applications, vol. 45. Springer, Berlin (2004)

    Google Scholar 

  4. Bert, C.W.: Nonlinear vibration of a rectangular plate arbitrary laminated of anisotropic materials. J. Appl. Mech. 40, 425–458 (1973)

    Google Scholar 

  5. Bialecki, B., Karageorghis, A.: A Legendre spectral Galerkin method for the biharmonic Dirichlet problem. SIAM J. Sci. Comput. 22, 1549–1569 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bjørstad, P.E., Tjøstheim, B.P.: Efficient algorithms for solving a fourth-order equation with spectral-Galerkin method. SIAM J. Sci. Comput 18, 621–632 (1997)

    Article  MathSciNet  Google Scholar 

  7. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  8. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods. Springer, Berlin (2006)

    MATH  Google Scholar 

  9. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Evolution to complex Geometries and Applications to Fluid Dynamics. Springer, Berlin (2007)

    Google Scholar 

  10. Chia, C.Y.: Nonlinear Analysis of Plates. McGraw-Hill, New York (1980)

    Google Scholar 

  11. Doha, E.H., Bhrawy, A.H.: Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials. Appl. Numer. Math. 58, 1224–1244 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Funaro, D.: Polynomial Approxiamtions of Differential Equations. Springer, Berlin (1992)

    Google Scholar 

  13. Guo, B.-Y.: Spectral Methods and Their Applications. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  14. Guo, B.-Y.: Jacobi approximations in certain Hilbert spaces and their applications to singular differential equations. J. Math. Anal. Appl. 243, 373–408 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, B.-Y.: Some progress in spectral methods. Sci. China Math. 56, 2411–2438 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guo, B.-Y., Jia, H.-L.: Spectral method on quadrilaterals. Math. Comput. 79, 2237–2264 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, B.-Y., Shen, J., Wang, L.-L.: Optimal spectral-Galerkin methods using generalized Jacobi polynomials. J. Sci. Comput. 27, 305–322 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guo, B.-Y., Sun, T., Zhang, C.: Jacobi and Laguerre quasi-orthogonal approximations and related interpolations. Math. Comput. 82, 413–441 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Guo, B.-Y., Wang, L.-L.: Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J. Approx. Theory 128, 1–41 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo, B.-Y., Wang, L.-L.: Error analysis of spectral method on a triangle. Adv. Comput. Math. 26, 473–496 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, B.-Y., Wang, T.-J.: Composite Laguerre-Legendre spectral method for fourth-order exterior problems. J. Sci. Comput. 44, 255–285 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo, B.-Y., Wang, Z.-Q., Wan, Z.-S., Chu, D.-L.: Second order Jacobi approximation with applications to fourth-order differential equations. Appl. Numer. Math. 55, 480–520 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Harras, B., Benamar, R., White, R.G.: Investigation of nonlinear free vibrations of fully clamped symmetrically laminated carbon-fibre-reinforced PEEK(AS4/APC2) rectangular composite panels. Compos. Sci. Technol. 62, 719–727 (2002)

    Article  Google Scholar 

  24. Jia, H.-L., Guo, B.-Y.: Petrov–Galerkin spectral element method for mixed inhomogeneous boundary value problems on polygons. Chin. Ann. Math. 31B, 855–878 (2010)

    Article  MathSciNet  Google Scholar 

  25. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for CFD, 2nd edn. Oxford University Press, Oxford (2005)

    Book  Google Scholar 

  26. Narita, Y.: Combinations for the free-vibration behaviors of anisotropic rectangular plates under general edge conditions. J. Appl. Mech. 67, 568–573 (2000)

    Article  MATH  Google Scholar 

  27. Reddy, J.N.: A simply higher-order theory for laminated composite plates. J. Appl. Mech. 51, 745–754 (1984)

    Article  MATH  Google Scholar 

  28. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, Berlin (2011)

    Book  Google Scholar 

  29. Yu, X.-H., Guo, B.-Y.: Spectral element method for mixed inhomogeneous boundary value problems of fourth order. J. Sci. Comput. 61, 673–701 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank professor Hu Jun of Peking University for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben-yu Guo.

Additional information

This work is supported in part by NSF of China N.11171227 and N.11426155, Fund for Doctoral Authority of China N.20123127110001, Fund for E-institute of Shanghai Universities N.E03004, Leading Academic Discipline Project of Shanghai Municipal Education Commission N.J50101, and the Hujiang Foundation of China (B14005).

Appendix

Appendix

This appendix is devoted to the lifting technique. The edges \(L_i\) of domain \(\Omega \) are as follows (see Fig. 1),

$$\begin{aligned} L_i:\,l_i(x,y)=a_i x+b_i y+c_i=0,\qquad 1\le i\le 4. \end{aligned}$$
(A.1)

Let \(l_{i+4}(x,y)=l_i(x,y),~i=1,2,3,4\). We could rewrite the equations corresponding to the edges as \(x=x_i(y)\) for \(L_i,i=1,3\), and \(y=y_i(x)\) for \(L_i,i=2,4\). Clearly,

$$\begin{aligned} \frac{dx_i}{dy}=-\frac{b_i}{a_i}\,\mathrm{for }\,i=1,3,\qquad \frac{dy_i}{dx}=-\frac{a_i}{b_i} \,\mathrm{for}\,i=2,4. \end{aligned}$$
(A.2)

We denote the normal vector of edges \(L_i\) by \(n_i=(\cos \alpha _i,\cos \beta _i)^T,~1\le i\le 4\). Besides, \(Q_i\) stand for the four corners of domain \(\Omega \) as in Fig. 1.

Our aim is to design the lifting function \(v_b(x,y)\) such that

$$\begin{aligned} v_b(x,y)|_{L_i}= & {} v_b(x_i(y),y) = g_i(y),\qquad \partial _{n_i} v_b(x,y)|_{L_i}=h_i(y),\qquad i=1,3, \nonumber \\ v_b(x,y)|_{L_i}= & {} v_b(x,y_i(x))=g_i(x),\qquad \partial _{n_i} v_b(x,y)|_{L_i}=h_i(x),\qquad i=2,4, \end{aligned}$$
(A.3)

where \(g_i(y),h_i(y) (i=1,3)\) and \(g_i(x),h_i(x)(i=2,4)\) are given functions. In addition, the functions \(g_i(y)\) and \(g_i(x)\) fulfill certain consistent conditions ensuring the continuity of \(v_b(x,y)\) at the corners of domain.

In the forthcoming discussions, we introduce the following polynomials,

$$\begin{aligned} s_i(x,y)= & {} \displaystyle \prod _{1\le j\le 4,j\ne i}(a_j x+b_j y+c_j)^2=\displaystyle \frac{l_1^2(x,y)l_2^2(x,y)l_3^2(x,y)l_4^2(x,y)}{l_i^2(x,y)}, \nonumber \\ t_i(x,y)= & {} (a_i x+b_i y+c_i)s_i(x,y)=l_i(x,y)s_i(x,y),\qquad i=1,2,3,4. \end{aligned}$$
(A.4)

It can be checked that

$$\begin{aligned} \partial _n s_i(x,y)\ne & {} 0,\quad s_i(x,y)\ne 0,\quad \partial _n t_i(x,y)\ne 0,\quad t_i(x,y)=0,\quad \,\mathrm{on}\,L_i,\,i=1,2,3,4, \nonumber \\ \partial _n s_i(x,y)= & {} s_i(x,y)=\partial _n t_i(x,y)=t_i(x,y)=0,\quad \mathrm{~on~}\cup ^{4}_{j=1,j\ne i}L_j, \end{aligned}$$
(A.5)

We also introduce the following polynomials,

$$\begin{aligned} \sigma _{i1}(x,y)= & {} l^2_{i+2}(x,y)l^2_{i+3}(x,y),\qquad \sigma _{i2}(x,y)=l_{i+1}(x,y)\sigma _{i1}(x,y), \nonumber \\ \sigma _{i3}(x,y)= & {} l_{i}(x,y)\sigma _{i1}(x,y),\,\,\,\quad \qquad \sigma _{i4}(x,y)=l_{i}(x,y)l_{i+1}(x,y)\sigma _{i1}(x,y), \nonumber \\ i= & {} 1,2,3,4. \end{aligned}$$
(A.6)

It can be verified that

$$\begin{aligned} \sigma _{12}(x,y)|_{L_2}= & {} \sigma _{13}(x,y)|_{L_1}=\sigma _{14}(x,y)|_{L_1\cup L_2}=0, \nonumber \\ \partial _n \sigma _{1j}(x,y)|_{L_3\cup L_4}= & {} \sigma _{1j}(x,y)|_{L_3\cup L_4}=0,\quad 1\le j\le 4. \end{aligned}$$
(A.7)

We can also verify that \(\sigma _{ij}(x,y),2\le i,j\le 4\) have the same properties. Accordingly, we design the desired lifting function \(v_b(x,y)\) satisfying (A.3) as follows,

$$\begin{aligned} v_b(x,y)= & {} \widetilde{g}_1(y)s_1(x,y)+\widetilde{h}_1(y)t_1(x,y) +\widetilde{g}_2(x)s_2(x,y)+\widetilde{h}_2(x)t_2(x,y) \nonumber \\&+\,\widetilde{g}_3(y)s_3(x,y)+\widetilde{h}_3(y)t_3(x,y) \nonumber \\&+\,\widetilde{g}_4(x)s_4(x,y)+\widetilde{h}_4(x)t_4(x,y)+\displaystyle \sum ^4_{i,j=1}p_{ij}\sigma _{ij}(x,y), \end{aligned}$$
(A.8)

where \(\widetilde{g}_i,\widetilde{h}_i\) and \(p_{ij}, 1\le i,j\le 4\) are undetermined functions and constants. We shall construct those undetermined quantities properly in the following four steps.

Step 1 According to (A.3), we use (A.5) and (A.7) to derive that

$$\begin{aligned} v_b(x,y)|_{L_1}= & {} \widetilde{g}_1(y)s_1(x_1(y),y)+p_{11}\sigma _{11}(x_1(y),y)+p_{12}\sigma _{12}(x_1(y),y) \nonumber \\&+\,p_{41}\sigma _{41}(x_1(y),y)+p_{43}\sigma _{43}(x_1(y),y)=g_1(y), \nonumber \\ v_b(x,y)|_{L_2}= & {} \widetilde{g}_2(x)s_2(x,y_2(x))+p_{21}\sigma _{21}(x,y_2(x))+p_{22}\sigma _{22}(x,y_2(x)) \nonumber \\&+\,p_{11}\sigma _{11}(x,y_2(x))+p_{13}\sigma _{13}(x,y_2(x))=g_2(x),\qquad \mathrm {etc.} \end{aligned}$$
(A.9)

Furthermore, the corner \(Q_1=L_1\cap L_2\). Thus we know from (A.5) and (A.7) that

$$\begin{aligned} s_1(x_1(y),y)= & {} s_2(x,y_2(x))=\sigma _{12}(x_1(y),y)=\sigma _{13}(x,y_2(x)) \\= & {} \sigma _{21}(x,y_2(x))=\sigma _{22}(x,y_2(x))=\sigma _{41}(x_1(y),y)\\= & {} \sigma _{43}(x_1(y),y)=0, \qquad \,\mathrm{at} \,Q_1. \end{aligned}$$

Therefore

$$\begin{aligned} v_b(x,y)|_{Q_1}=p_{11}\sigma _{11}(x,y)|_{Q_1}=g_1(y)|_{Q_1}=g_2(x)|_{Q_1}. \end{aligned}$$

In other words,

$$\begin{aligned} p_{11}=\frac{g_1(y)|_{Q_1}}{\sigma _{11}(x,y)|_{Q_1}}=\frac{g_2(x)|_{Q_1}}{\sigma _{11}(x,y)|_{Q_1}}. \end{aligned}$$
(A.10)

Due to the continuity of \(v_b(x,y)\), we have \(g_1(y)|_{Q_1}=g_2(x)|_{Q_1}\). Thereby, the above expression is meaningful and so determines the constant \(p_{11}\). In the same manner, we can calculate the constants \(p_{i1},\,i=2,3,4\).

Step 2 For simplicity, let \(\partial _x s_1(x_1(y),y)=\partial _x s_1(x,y)|_{x=x_1(y)}\), etc. By differentiating the two equations of (A.9), we derive that

$$\begin{aligned} \partial _y(v_b(x_1(y),y))= & {} \partial _y\widetilde{g}_1(y)s_1(x_1(y),y) +\widetilde{g}_1(y)(\partial _xs_1(x_1(y),y)\frac{dx_1}{dy}+\partial _y s_1(x_1(y),y)) \nonumber \\&+\,p_{11}(\partial _x\sigma _{11}(x_1(y),y)\frac{dx_1}{dy}+\partial _y\sigma _{11}(x_1(y),y)) \nonumber \\&+\,p_{12}(\partial _x\sigma _{12}(x_1(y),y)\frac{dx_1}{dy}+\partial _y\sigma _{12}(x_1(y),y)) \nonumber \\&+\,p_{41}(\partial _x\sigma _{41}(x_1(y),y)\frac{dx_1}{dy}+\partial _y\sigma _{41}(x_1(y),y)) \nonumber \\&+\,p_{43}(\partial _x\sigma _{43}(x_1(y),y)\frac{dx_1}{dy}+\partial _y\sigma _{43}(x_1(y),y))=\partial _yg_1(y), \nonumber \\ \partial _x(v_b(x,y_2(x)))= & {} \partial _x\widetilde{g}_2(x)s_2(x,y_2(x)) +\widetilde{g}_2(x) \left( \partial _xs_2(x,y_2(x))+\partial _ys_2(x,y_2(x))\frac{dy_2}{dx}\right) \nonumber \\&+\,p_{21} \left( \partial _x\sigma _{21}(x,y_2(x))+\partial _y\sigma _{21}(x,y_2(x))\frac{dy_2}{dx}\right) \nonumber \\&+\,p_{22}\left( \partial _x\sigma _{22}(x,y_2(x))+\partial _y\sigma _{22}(x,y_2(x))\frac{dy_2}{dx}\right) \nonumber \\&+\,p_{11}\left( \partial _x\sigma _{11}(x,y_2(x))+\partial _y\sigma _{11}(x,y_2(x))\frac{dy_2}{dx}\right) \nonumber \\&+\,p_{13}\left( \partial _x\sigma _{13}(x,y_2(x))+\partial _y\sigma _{13}(x,y_2(x))\frac{dy_2}{dx}\right) =\partial _xg_2(x). \end{aligned}$$
(A.11)

Moreover, we know from (A.5) and (A.7) that at the corner \(Q_1\),

$$\begin{aligned} s_1(x_1(y),y)= & {} \partial _x s_1(x_1(y),y)=\partial _y s_1(x_1(y),y)=0 \\ s_2(x,y_2(x))= & {} \partial _x s_2(x,y_2(x))=\partial _y s_2(x,y_2(x))=0, \\ \partial _x\sigma _{41}(x_1(y),y)= & {} \partial _y\sigma _{41}(x_1(y),y)=\partial _x\sigma _{43}(x_1(y),y)=\partial _y\sigma _{43}(x_1(y),y)=0, \\ \partial _x\sigma _{21}(x,y_2(x))= & {} \partial _y\sigma _{21}(x,y_2(x))=\partial _x\sigma _{22}(x,y_2(x))=\partial _y\sigma _{22}(x,y_2(x))=0. \end{aligned}$$

Therefore

$$\begin{aligned} \partial _yv_b(x_1(y),y)|_{Q_1}= & {} p_{11}(\partial _x\sigma _{11}(x_1(y),y)\frac{dx_1}{dy}+\partial _y\sigma _{11}(x_1(y),y))|_{Q_1} \nonumber \\&+\,p_{12}(\partial _x\sigma _{12}(x_1(y),y)\frac{dx_1}{dy}+\partial _y\sigma _{12}(x_1(y),y))|_{Q_1}=\partial _yg_1(y)|_{Q_1}, \nonumber \\ \partial _xv_b(x,y_2(x))|_{Q_1}= & {} p_{11}(\partial _x\sigma _{11}(x,y_2(x))+\partial _y\sigma _{11}(x,y_2(x))\frac{dy_2}{dx})|_{Q_1} \nonumber \\&+\,p_{13}(\partial _x\sigma _{13}(x,y_2(x))+\partial _y\sigma _{13}(x,y_2(x))\frac{dy_2}{dx})|_{Q_1} \nonumber \\= & {} \partial _xg_2(x)|_{Q_1}. \end{aligned}$$
(A.12)

Consequently,

$$\begin{aligned} p_{12}= & {} \displaystyle \frac{\partial _yg_1(y)|_{Q_1}-p_{11}(\partial _x\sigma _{11}(x_1(y),y)\frac{dx_1}{dy}+\partial _y\sigma _{11}(x_1(y),y))|_{Q_1}}{(\partial _x\sigma _{12}(x_1(y),y)\frac{dx_1}{dy}+\partial _y\sigma _{12}(x_1(y),y))|_{Q_1}}, \nonumber \\ p_{13}= & {} \displaystyle \frac{\partial _xg_2(x)|_{Q_1}-p_{11}(\partial _x\sigma _{11}(x,y_2(x))+\partial _y\sigma _{11}(x,y_2(x))\frac{dy_2}{dx})|_{Q_1}}{(\partial _x\sigma _{13}(x,y_2(x))+\partial _y\sigma _{13}(x,y_2(x))\frac{dy_2}{dx})|_{Q_1}}. \end{aligned}$$
(A.13)

These expressions with (A.10) determine the constants \(p_{12}\) and \(p_{13}\). We can calculate the \(p_{i2}\) and \(p_{i3},~i=2,3,4\) in the same way.

Furthermore, we obtain from the first equation of (A.9) that

$$\begin{aligned}&\widetilde{g}_1(y)\nonumber \\&\quad =\displaystyle \frac{g_1(y)-p_{11}\sigma _{11}(x_1(y),y)-p_{12}\sigma _{12}(x_1(y),y) -p_{41}\sigma _{41}(x_1(y),y)-p_{43}\sigma _{43}(x_1(y),y)}{s_1(x_1(y),y)}. \end{aligned}$$
(A.14)

Since \(p_{ij},\,1\le i\le 4,1\le j\le 3\) are given already by (A.10) and (A.13), the above expressions determine the functions \(\widetilde{g}_1(y)\). We also can determine the functions \(\widetilde{g}_2(x),\widetilde{g}_3(y)\) and \(\widetilde{g}_4(x)\).

Step 3 According to (A.3), we use (A.5) and (A.7) to derive that

$$\begin{aligned} h_1(y)= & {} \partial _{n_1}u(x,y)|_{L_1}=\partial _xu(x_1(y),y)\cos \alpha _1+\partial _yu(x_1(y),y)\cos \beta _1,\\ h_2(x)= & {} \partial _{n_2}u(x,y)|_{L_2}=\partial _xu(x,y_2(x))\cos \alpha _2+\partial _yu(x,y_2(x))\cos \beta _2. \end{aligned}$$

Then, we have

$$\begin{aligned} \partial _yh_1(y)|_{Q_1}= & {} (\partial ^2_xu(x,y)\frac{d x_1}{d y}+\partial _{xy}u(x,y))|_{Q_1}\cos \alpha _1 +(\partial _{xy}u(x,y)\frac{d x_1}{d y} \nonumber \\&+\,\partial ^2_yu(x,y))|_{Q_1}\cos \beta _1, \nonumber \\ \partial _xh_2(x)|_{Q_1}= & {} \left( \partial ^2_xu(x,y)+\partial _{xy}u(x,y)\frac{dy_2}{dx}\right) |_{Q_1}\cos \alpha _2 \nonumber \\&+\,\left( \partial _{xy}u(x,y)+\partial ^2_yu(x,y)\frac{dy_2}{dx}\right) |_{Q_1}\cos \beta _2. \end{aligned}$$
(A.15)

Moreover, due to \(g_1(y)=u(x_1(y),y),~g_4=u(x,y_4(x))\) and (A.4), we find that

$$\begin{aligned} \partial ^2_yg_1(y)|_{Q_1}= & {} \partial ^2_xu(x,y)|_{Q_1}\left( \frac{dx_1}{dy}\right) ^2 +2\partial _{xy}u(x,y)|_{Q_1}\frac{d x_1}{d y}+\partial ^2_yu(x,y)|_{Q_1}, \nonumber \\ \partial ^2_xg_2(x)|_{Q_1}= & {} \partial ^2_xu(x,y)|_{Q_1}+2\partial _{xy}u(x,y)|_{Q_1}\frac{dy_2}{dx} +\partial ^2_yu(x,y)|_{Q_1}\left( \frac{dy_2}{dx}\right) ^2. \end{aligned}$$
(A.16)

From the first equation of (A.15) and (A.16), we have

$$\begin{aligned} A_{Q_1}= & {} \left( \left( \frac{dx_1}{dy}\right) ^2\left( \frac{dy_4}{dx}\right) ^2-1\right) \partial _yh_1(y)|_{Q_1} \nonumber \\&+\,\left( \cos \beta _1-\frac{dx_1}{dy}\left( \frac{dy_4}{dx}\right) ^2\cos \alpha _1\right) \partial ^2_yg_1(y)|_{Q_1} \nonumber \\&+\,\left( \frac{dx_1}{dy}\cos \alpha _1-\left( \frac{dx_1}{dy}\right) ^2\cos \beta _1\right) \partial ^2_xg_4(x)|_{Q_1}, \nonumber \\ B_{Q_1}= & {} \left( \cos \alpha _1+\frac{dx_1}{dy}\cos \beta _1\right) \left( \left( \frac{dx_1}{dy}\right) ^2\left( \frac{dy_4}{dx}\right) ^2-1\right) \nonumber \\&+\,2\frac{dx_1}{dy}\frac{dy_4}{dx}\cos \alpha _1+2\frac{dx_1}{dy}\cos \beta _1 \nonumber \\&-\,2\left( \frac{dx_1}{dy}\right) ^2\left( \frac{dy_4}{dx}\right) ^2\cos \alpha _1 -2\left( \frac{dx_1}{dy}\right) ^2\frac{dy_4}{dx}\cos \beta _1. \nonumber \\ \partial _{xy}u(x,y)|_{Q_1}= & {} \frac{A_{Q_1}}{B_{Q_1}}. \end{aligned}$$
(A.17)

From the second equation of (A.15) and (A.16), we have

$$\begin{aligned} C_{Q_1}= & {} \left( \left( \frac{dx_1}{dy}\right) ^2\left( \frac{dy_4}{dx}\right) ^2-1\right) \partial _yh_4(y)|_{Q_1} \nonumber \\&+\,\left( \frac{dy_4}{dx}\cos \beta _4-\left( \frac{dy_4}{dx}\right) ^2\cos \alpha _4\right) \partial ^2_yg_1(y)|_{Q_1} \nonumber \\&+\,\left( \cos \alpha _4-\left( \frac{dx_1}{dy}\right) ^2\frac{dy_4}{dx}\cos \beta _4\right) \partial ^2_xg_4(x)|_{Q_1}, \nonumber \\ D_{Q_1}= & {} \left( \frac{dy_4}{dx}\cos \alpha _4+\cos \beta _4\right) \left( \left( \frac{dx_1}{dy}\right) ^2\left( \frac{dy_4}{dx}\right) ^2-1\right) \nonumber \\&+\,2\frac{dy_4}{dx}\cos \alpha _4+2\frac{dx_1}{dy}\frac{dy_4}{dx}\cos \beta _4 \nonumber \\&-\,2\frac{dx_1}{dy}\left( \frac{dy_4}{dx}\right) ^2\cos \alpha _4 -2\left( \frac{dx_1}{dy}\right) ^2\left( \frac{dy_4}{dx}\right) ^2\cos \beta _4. \nonumber \\ \partial _{xy}u(x,y)|_{Q_1}= & {} \frac{C_{Q_1}}{D_{Q_1}}. \end{aligned}$$
(A.18)

Then, we obtain the compatibility conditions as \(\partial _{xy}u(x,y)|_{Q_1}=\frac{A_{Q_1}}{B_{Q_1}}=\frac{C_{Q_1}}{D_{Q_1}}\).

Next, by differentiating the (A.8) twice, we derive that

$$\begin{aligned} \partial _{xy}v(x,y)= & {} \partial _y\widetilde{g}_1(y)\partial _xs_1(x,y)+\widetilde{g}_1(y)\partial _{xy}s_1(x,y) +\partial _y\widetilde{h}_1(y)\partial _xt_1(x,y) \\&+\,\widetilde{h}_1(y)\partial _{xy}t_1(x,y) +\partial _x\widetilde{g}_2(x)\partial _ys_2(x,y)+\widetilde{g}_2(x)\partial _{xy}s_2(x,y)\\&+\,\partial _x\widetilde{h}_2(x)\partial _yt_2(x,y)+\widetilde{h}_2(x)\partial _{xy}t_2(x,y)+\partial _y\widetilde{g}_3(y)\partial _xs_3(x,y)\\&+\,\widetilde{g}_3(y)\partial _{xy}s_3(x,y) +\partial _y\widetilde{h}_3(y)\partial _xt_3(x,y)+\widetilde{h}_3(y)\partial _{xy}t_3(x,y)\\&+\,\partial _x\widetilde{g}_4(x)\partial _ys_4(x,y)+\widetilde{g}_4(x)\partial _{xy}s_4(x,y) +\partial _x\widetilde{h}_4(x)\partial _yt_4(x,y)\\&+\,\widetilde{h}_4(x)\partial _{xy}t_4(x,y) +\sum ^4_{i,j=1}p_{ij}\partial _{xy}\sigma _{ij}(x,y). \end{aligned}$$

Moreover, we know form (A.5) and (A.7) that

$$\begin{aligned} \partial _xs_i(x,y)|_{Q_1}= & {} \partial _xt_i(x,y)|_{Q_1} = \partial _{xy}t_i(x,y)|_{Q_1}=\partial _{xy}\sigma _{i4}(x,y)|_{Q_1}=0,\qquad 1\le i\le 4, \\ \partial _{xy}s_3(x,y)|_{Q_1}= & {} \partial _{xy}s_4(x,y)|_{Q_1}=0. \end{aligned}$$

Therefore,

$$\begin{aligned} \partial _{xy}u(x,y)|_{Q_1}= & {} \partial _{xy}v(x,y)|_{Q_1} \\= & {} \widetilde{g}_1(y)\partial _{xy}s_1(x,y)|_{Q_1}+\widetilde{g}_2(x)\partial _{xy}s_2(x,y)|_{Q_1} +\displaystyle \sum ^4_{i=1}\displaystyle \sum ^3_{j=1}p_{ij}\partial _{xy}\sigma _{ij}(x,y)|_{Q_1}. \end{aligned}$$

Consequently,

$$\begin{aligned} p_{14} = \frac{\partial _{xy}u(x,y)|_{Q_1} -(\widetilde{g}_1(y)\partial _{xy}s_1(x,y) +\widetilde{g}_2(x)\partial _{xy}s_2(x,y) +\sum \nolimits ^4_{i=1}\sum \nolimits ^3_{j=1}p_{ij}\partial _{xy}\sigma _{ij}(x,y))|_{Q_1}}{\partial _{xy}\sigma _4(x,y)|_{Q_1}}. \end{aligned}$$
(A.19)

In the same manner, we can determine the constants \(p_{i4},~1\le i\le 4\).

Step 4 According to (A.3), we use (A.5) and (A.7) to derive that

$$\begin{aligned} \partial _nv_b(x,y)|_{L_1}= & {} \partial _n(\widetilde{g}_1(y)s_1(x,y) +\widetilde{h}_1(y)t_1(x,y)+\displaystyle \sum ^4_{i,j=1}p_{ij}\partial _{xy}\sigma _{ij}(x,y))|_{L_1} \nonumber \\= & {} h_1(y). \end{aligned}$$
(A.20)

Moreover, with the aid of (A.5), we deduce that

$$\begin{aligned} \partial _n(\widetilde{h}_1(y)t_1(x,y))|_{L_1}= & {} (\widetilde{h}_1(y)\partial _xt_1(x,y)\cos \alpha _1+\partial _y\widetilde{h}_1(y)t_1(x,y)\cos \beta _1\\&+\,\widetilde{h}_1(y)\partial _yt_1(x,y)\cos \beta _1)|_{L_1} \\= & {} \widetilde{h}_1(y)(\partial _xt_1(x,y)\cos \alpha _1+\partial _yt_1(x,y)\cos \beta _1)|_{L_1}\\= & {} \widetilde{h}_1(y)\partial _nt_1(x,y)|_{L_1}. \end{aligned}$$

By substituting the above equality into (A.20), we obtain

$$\begin{aligned} \widetilde{h}_1(y)=\frac{h_1(y)-\partial _n(\widetilde{g}_1(y)s_1(x,y))|_{L_1} -\left( \displaystyle \sum \nolimits ^4_{i,j=1}p_{ij}\partial _{xy}\sigma _{ij}(x,y)\right) |_{L_1}}{\partial _nt_1(x,y)|_{L_1}}, \end{aligned}$$
(A.21)

which determines the function \(\widetilde{h}_1(y)\).

In the same way, we can determine the functions \(\widetilde{h}_2(x),\,\widetilde{h}_3(y)\) and \(\widetilde{h}_4(x)\).

Finally, a combination of (A.10), (A.13), (A.14), (A.19) and (A.21) leads to the desired lifting function (A.8).

Remark 5.1

We can construct the lifting function for the boundary condition corresponding to the mixed inhomogeneous boundary value problems of fourth order.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Xh., Guo, By. Spectral Method for Fourth-Order Problems on Quadrilaterals. J Sci Comput 66, 477–503 (2016). https://doi.org/10.1007/s10915-015-0031-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0031-6

Keywords

Mathematics Subject Classification

Navigation