Skip to main content
Log in

Discrete Helmholtz–Hodge Decomposition on Polyhedral Meshes Using Compatible Discrete Operators

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This article provides a methodology to perform discrete Helmholtz–Hodge decomposition on three-dimensional polyhedral meshes using structure-preserving schemes: the Compatible Discrete Operator schemes. We propose to extract the decomposition components independently with one equation to solve per component or potential. The key of the method is the choice of a discrete Hodge operator that makes a compromise between convergence rate and computational cost. Numerical experiments are performed to evaluate the convergence rate and the computational cost on various polyhedral meshes, in particular, on the FVCA benchmark meshes. We also investigate some linear solver capabilities to solve our equations. The main contribution of this paper is the application of the CDO schemes to the Hodge decomposition and the required solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Tong, Y., Lombeyda, S., Hirani, A.N., Desbrun, M.: Discrete multiscale vector field decomposition. In: ACM SIGGRAPH 2003 Papers on—SIGGRAPH ’03, vol. 1, p. 445. ACM Press, New York, NY, USA (2003)

  2. Wiebel, A., Scheuermann, G., Garth, C.: Feature detection in vector fields using the Helmholtz–Hodge decomposition. Master’s thesis, University of Kaiserslautern (2004)

  3. Polthier, K., Preuß, E.: Identifying vector field singularities using a discrete Hodge decomposition. Work 5, 1–22 (2002)

  4. Angot, P., Caltagirone, J.P., Fabrie, P.: A fast vector penalty-projection method for incompressible non-homogeneous or multiphase Navier-Stokes problems. Appl. Math. Lett. 25(11), 1681 (2012)

  5. Bhatia, H., Norgard, G., Pascucci, V., Bremer, P.T.: The Helmholtz–Hodge decomposition—a survey. IEEE Trans. Vis. Comput. Graph. 99, 1 (2012, preprint)

  6. Hyman, J.M., Shashkov, M.: The orthogonal decomposition theorems for mimetic finite difference methods. SIAM J. Numer. Anal. 36, 788–818 (1999)

  7. Bonelle, J., Ern, A.: Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESAIM: Mathematical Modelling and Numerical Analysis (2013)

  8. Bossavit, A.: Computational electromagnetism and geometry: building a finite-dimensional ‘Maxwell’s house’. (1): Network equations. Jpn. Soc. Appl. Electromagn. Mech. 7(2), 150–159 (1999)

  9. Hyman, J.M., Shashkov, M.: Adjoint operators for the natural discretizations of the divergence, gradient and curl on logically rectangular grids. Appl. Numer. Math. 25(4), 413–442 (1997)

  10. Hyman, J.M., Shashkov, M.J.: Natural discretizations for the divergence, gradient, and curl on logically rectangular grids. Comput. Math. Appl. 33(4), 81–104 (1997)

  11. Lipnikov, K., Manzini, G., Shashkov, M.: Mimetic finite difference method. J. Comput. Phys. 257, 1163–1227 (2014)

  12. Guo, Q., Mandal, M.K., Li, M.: Efficient Hodge–Helmholtz decomposition of motion fields. Pattern Recogn. Lett. 26(4), 493 (2005)

  13. Bluck, M., Walker, S.: High-order discrete Helmholtz decompositions for the electric field integral equation. IEEE Trans. Antennas Propag. 55(5), 1338 (2007)

  14. Bochev, P.B., Hyman, J.M.: Principles of mimetic discretizations of differential operators. In: Arnold, D.D., Bochev, P.B., Lehoucq, R.B., Nicolaides, R.A., Shashkov, M. (eds.) Compatible Spatial Discretization. The IMA Volumes in Mathematics and Its Applications, vol. 142, pp. 89–120. Springer, Berlin (2005)

  15. Brezzi, F., Lipnikov, K., Shashkov, M., Simoncini, V.: A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Eng. 196, 3682–3692 (2007)

  16. Codecasa, L., Specogna, R., Trevisan, F.: A new set of basis functions for the discrete geometric approach. J. Comput. Phys. 229(19), 7401 (2010)

  17. Tonti, E.: Why starting from differential equations for computational physics? J. Comput. Phys. B 257, 1260–1290 (2014)

  18. Bonelle, J., Ern, A.: Analysis of compatible discrete operator schemes for the Stokes equations on polyhedral meshes. arXiv:1401.7842 (2014)

  19. Angot, P., Caltagirone, J.P., Fabrie, P.: Fast discrete Helmholtz–Hodge decompositions in bounded domains. Appl. Math. Lett. 26 (2013, to appear)

  20. Gutknecht, M.H.: Variants of BICGSTAB for matrices with complex spectrum. SIAM J. Sci. Comput. 14(5), 1020–1033 (1993)

  21. Sleijpen, G.L., Fokkema, D.R.: BiCGstab (l) for linear equations involving unsymmetric matrices with complex spectrum. Electron. Trans. Numer. Anal. 1(11), 2000 (1993)

  22. Intel. Math Kernel Library. http://developer.intel.com/software/products/mkl/

  23. Bell, W.N.: Algebraic multigrid for discrete differential forms. Ph.D. thesis, Champaign, IL (2008)

  24. Ren, Z.: Influence of the rhs on the convergence behaviour of the curl-curl equation. IEEE Trans. Magn. 32(3), 655–658 (1996)

  25. Eymard, R., Henry, G., Herbin, R., Hubert, F., Klofkorn, R., Manzini, G.: 3d benchmark on discretization schemes for anisotropic diffusion problems on general grids. In: Proceedings of Finite Volumes for Complex Applications VI. Springer (Springer, Praha), pp. 895–930 (2011)

Download references

Acknowledgments

We would like to thank Jérôme Bonelle and Bruno Audebert from EDF and Marc Gerritsma from Delft University of Technology for meaningful discussions on the DHHD and discrete operators.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lemoine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemoine, A., Caltagirone, JP., Azaïez, M. et al. Discrete Helmholtz–Hodge Decomposition on Polyhedral Meshes Using Compatible Discrete Operators. J Sci Comput 65, 34–53 (2015). https://doi.org/10.1007/s10915-014-9952-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9952-8

Keywords

Navigation