Skip to main content
Log in

A Weak Galerkin Finite Element Scheme for the Biharmonic Equations by Using Polynomials of Reduced Order

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A new weak Galerkin (WG) finite element method for solving the biharmonic equation in two or three dimensional spaces by using polynomials of reduced order is introduced and analyzed. The WG method is on the use of weak functions and their weak derivatives defined as distributions. Weak functions and weak derivatives can be approximated by polynomials with various degrees. Different combination of polynomial spaces leads to different WG finite element methods, which makes WG methods highly flexible and efficient in practical computation. This paper explores the possibility of optimal combination of polynomial spaces that minimize the number of unknowns in the numerical scheme, yet without compromising the accuracy of the numerical approximation. Error estimates of optimal order are established for the corresponding WG approximations in both a discrete \(H^2\) norm and the standard \(L^2\) norm. In addition, the paper also presents some numerical experiments to demonstrate the power of the WG method. The numerical results show a great promise of the robustness, reliability, flexibility and accuracy of the WG method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arad, M., Yakhot, A., Ben-Dor, G.: A highly accurate numerical solution of a biharmonic equation. Numer. Methods Partial Differ. Equ. 13, 375C391 (1998)

    Google Scholar 

  2. Argyris, J.H., Fried, I., Scharpf, D.W.: The TUBA family of plate elements for the matrix displacement method. Aeronaut. J. R. Aeronaut. Soc. 72, 514C517 (1968)

    Google Scholar 

  3. Argyris, J.H., Dunne, P.C.: The finite element method applied to fluid dynamics. In: Hewitt, B.L., Illingworth, C.R., Lock, R.C., Mangler, K.W., McDonnel, J.H., Richards, C., Walkden, F. (eds.) Computational Methods and Problems in Aeronautical Fluid Dynamics, pp. 158–197. Academic Press, London (1976)

    Google Scholar 

  4. Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modl. Math. Anal. Numr. 19(1), 7–32 (1985)

    MATH  MathSciNet  Google Scholar 

  5. Behrens, E.M., Guzmán, J.: A mixed method for the biharmonic problem based on a system of first-order equations. SIAM J. Numer. Anal. 49, 789–817 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bialecki, B., Karageorghis, A.: A Legendre spectral Galerkin method for the biharmonic Dirichlet problem. SIAM J. Sci. Comput. 22(5), 1549–1569 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bialecki, B., Karageorghis, A.: Spectral Chebyshev collocation for the Poisson and biharmonic equations. SIAM J. Sci. Comput. 32(5), 2995–3019 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bialecki, B.: A fast solver for the orthogonal spline collocation solution of the biharmonic Dirichlet problem on rectangles. J. Comput. Phys. 191, 601–621 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bjorstad, P.: Fast numerical solution of the biharmonic dirichlet problem on rectangles. SIAM J. Numer. Anal. 20, 59–71 (1983)

    Article  MathSciNet  Google Scholar 

  10. Brenner, S., Sung, L.: \(C^0\) interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22/23, 83–118 (2005)

    Article  MathSciNet  Google Scholar 

  11. Chan, R.H., DeLillo, T.K., Horn, M.A.: The numerical solution of the biharmonic equation by conformal mapping. SIAM J. Sci. Comput. 18, 1571–1582 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen, G., Li, Z., Lin, P.: A fast finite difference method for biharmonic equations on irregular domains and its application to an incompressible Stokes flow. Adv. Comput. Math. 29, 113–133 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, H.R., Chen, S.C., Qiao, Z.H.: \(C^0\)-nonconforming tetrahedral and cuboid elements for the three-dimensional fourth order elliptic problem. Numer. Math. 124(1), 99–119 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chen, H.R., Chen, S.C., Qiao, Z.H.: \(C^0\)-nonconforming triangular prism elements for the three-dimensional fourth order elliptic problem. J. Sci. Comput. 55(3), 645–658 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ciarlet, P.A., Raviart, P.G.: A mixed finite element method for the biharmonic equation. In: Mathematical Aspects of Finite Elements in Partial Differential Equations. Academic Press, New York, pp. 125–145 (1974)

  16. Clough, R.W., Tocher, J.L.: Finite element stiffness matrices for analysis of plates in bending. In: Proceedings of the Conference on Matrix Methods in Structural Mechanics. Wright Patterson A.F.B., Ohio (1965)

  17. Cockburn, B., Dong, B., Guzmán, J.: A hybridizable and superconvergent discontinuous Galerkin method for biharmonic problems. J. Sci. Comput. 40, 141C187 (2009)

    Google Scholar 

  18. Davini, C., Pitacco, I.: An unconstrained mixed method for the biharmonic problem. SIAM J. Numer. Anal. 38, 820C836 (2001)

    MathSciNet  Google Scholar 

  19. Dean, E.J., Glowinski, R., Pironneau, O.: Iterative solution of the stream functionvorticity formulation of the Stokes problem, applications to the numerical simulation of incompressible viscous flow. Comput. Methods Appl. Mech. Eng. 87, 117–155 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ehrlich, L.W., Gupta, M.M.: Some difference schemes for the biharmonic equation. SIAM J. Numer. Anal. 12, 773–790 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  21. Engel, G., Garikipati, K., Hughes, T., Larson, M.G., Mazzei, L., Taylor, R.: Continuous/discontinuous finite element approximations of fourth order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Meth. Appl. Mech. Eng. 191, 3669–3750 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Fraeijs de Veubeke, B.: A conforming finite element for plate bending. In: Zienkiewicz, O.C., Holister, G.S. (eds.) Stress Analysis, p. 145C197. Wiley, New York (1965)

    Google Scholar 

  23. Greenbaum, A., Greengard, L., Mayo, A.: On the numerical solution of the biharmonic equation in the plane. Phys. D 60, 216–225 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gupta, M.M., Manohar, R.P.: Direct solution of biharmonic equation using noncoupled approach. J. Comput. Phys. 33, 236–248 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  25. Heinrichs, W.: A stabilized treatment of the biharmonic operator with spectral methods. SIAM J. Sci. Stat. Comput. 12, 1162–1172 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  26. Jaswon, M.A., Symm, G.T.: Integral Equation Methods in Potential Theory and Elastostatics, pp. 99–126. Academic Press, New York (1977)

    MATH  Google Scholar 

  27. Linden, J.: A Multigrid Method for Solving the Biharmonic Equation on Rectangular Domains, Notes Numer. Fluid Mech. 11, Vieweg, Braunschweig (1985)

  28. Morley, L.S.D.: The triangular equilibrium element in the solution of plate bending problems. Aero. Quart. 19, 149–169 (1968)

    Google Scholar 

  29. Mayo, A.: The fast solution of Poissons and the biharmonic equations on irregular regions. SIAM J. Numer. Anal. 21, 285–299 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  30. Mozolevski, I., Sli, E., Bsing, P.R.: hp-Version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation. J. Sci. Comput. 30, 465–491 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mu, L., Wang, J., Ye, X.: Weak Galerkin finite element methods on polytopal meshes. arXiv:1204.3655v2

  32. Mu, L., Wang, J., Ye, X.: Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, preprint

  33. Mu, L., Wang, J., Ye, X., Zhang, S.: A \(C^0\)-weak Galerkin finite element method for the biharmonic euqation, preprint

  34. Muskhelishvili, N.I.: Some Basic Problems in the Mathematical Theory of Elasticity. Noordhoff Groningen, The Netherlands (1953)

    Google Scholar 

  35. Pandit, S.K.: On the use of compact streamfunction-velocity formulation of steady Navier–Stokes equations on geometries beyond rectangular. J. Sci. Comput. 36, 219–242 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Roache, P.: Computational Fluid Dynamics. Hermosa, Albuquerque (1972)

    MATH  Google Scholar 

  37. Wang, C., Wang, J.: An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes. arXiv:1303.0927

  38. Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second-order elliptic problems. Math. Comput. 83(289), 2101–2126 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wang, J., Ye, X.: A weak Galerkin finite element method for the Stokes equations. arXiv:1302.2707v1

  41. Zlámal, M.: On the finite elmeent method. Numer. Math. 12, 394–409 (1968)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Professor Junping Wang for presenting this problem and giving us many valuable suggestions. The authors also thank the anonymous referees and editor for their careful reading of the manuscript and their valuable comments to improvement the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Zhang.

Additional information

The research of Zhang was supported in part by China Natural National Science Foundation (11271157, 11371171, 11471141), and by the Program for New Century Excellent Talents in University of Ministry of Education of China.

Appendix: \(L^2\) Projection and Some Technical Results

Appendix: \(L^2\) Projection and Some Technical Results

In this section, we shall present some technical results for the \(L^2\) projection operators with respect to the finite element space \(V_h\). These results are useful for the error estimates of the WG finite element method.

Lemma 7.1

([39])  (Trace Inequality) Let \(\mathcal {T}_h\) be a partition of the domain \(\Omega \) into polygons in 2D or polyhedra in 3D. Assume that the partition \(\mathcal {T}_h\) satisfies the assumptions (A1), (A2), and (A3) as specified in [39]. Then, there exists a constant \(C\) such that for any \(T\in \mathcal {T}_h\) and edge/face \(e\in \partial T\), we have

$$\begin{aligned} \Vert \theta \Vert ^p_{e}\le Ch_T^{-1}(\Vert \theta \Vert ^p_{T}+h^p_T\Vert \nabla \theta \Vert ^p_{T}), \end{aligned}$$
(7.1)

where \(\theta \in H^{1}(T)\) is any function.

Lemma 7.2

([39]) (Inverse Inequality) Let \(\mathcal {T}_h\) be a partition of the domain \(\Omega \) into polygons or polyhedra. Assume that \(\mathcal {T}_h\) satisfies all the assumptions (A1)–(A4) as specified in [39]. Then, there exists a constant \(C(n)\) such that

$$\begin{aligned} \Vert \nabla \varphi \Vert _{T}\le C(n)h^{-1}_T\Vert \varphi \Vert _{T},\quad \forall T\in \mathcal {T}_h \end{aligned}$$
(7.2)

for any piecewise polynomial \(\varphi \) of degree \(n\) on \(\mathcal {T}_h\).

1.1 Approximation Properties

The following lemma provides some approximation properties for the projection operators \(Q_h\) and \(\mathbb {Q}_h\).

Lemma 7.3

([32]) Let \(\mathcal {T}_h\) be a finite element partition of \(\Omega \) satisfying the shape regularity assumptions. Then, for any \(0\le s\le 2\) and \(2\le m\le k\) we have

$$\begin{aligned}&\sum _{T\in \mathcal {T}_h}h^{2s}_T\Vert u-Q_0u\Vert ^2_{s,T}\le Ch^{2(m+1)}\Vert u\Vert ^2_{m+1},\end{aligned}$$
(7.3)
$$\begin{aligned}&\sum _{T\in \mathcal {T}_h}h^{2s}_T\Vert \Delta u-\mathbb {Q}_h\Delta u\Vert ^2_{s,T}\le Ch^{2(m-1)}\Vert u\Vert ^2_{m+1}. \end{aligned}$$
(7.4)

Lemma 7.4

Let \( 2 \le m\le k, \omega \in H^{m+2}(\Omega )\). There exists a constant \(C\) such that the following estimates hold true:

$$\begin{aligned} \left( \sum _{T\in \mathcal {T}_h} h_T\Vert \Delta \omega -\mathbb {Q}_h\Delta \omega \Vert ^2_{\partial T}\right) ^{\frac{1}{2}}&\le Ch^{m-1}\Vert \omega \Vert _{m+1},\end{aligned}$$
(7.5)
$$\begin{aligned} \left( \sum _{T\in \mathcal {T}_h}h^3_T\Vert \nabla (\Delta \omega -\mathbb {Q}_h\Delta \omega )\Vert ^2_{\partial T}\right) ^{\frac{1}{2}}&\le Ch^{m-1}(\Vert \omega \Vert _{m+1}+h\delta _{m,2}\Vert \omega \Vert _4),\end{aligned}$$
(7.6)
$$\begin{aligned} \left( \sum _{T\in \mathcal {T}_h}h^{-1}_T\Vert \nabla (Q_0\omega )\cdot \mathbf n _e -Q_b(\nabla \omega \cdot \mathbf n _e)\Vert ^2_{\partial T}\right) ^{\frac{1}{2}}&\le Ch^{m-1}\Vert \omega \Vert _{m+1},\end{aligned}$$
(7.7)
$$\begin{aligned} \left( \sum _{T\in \mathcal {T}_h}h^{-3}_T\Vert Q_b Q_0\omega -Q_b\omega \Vert ^2_{\partial T}\right) ^{\frac{1}{2}}&\le Ch^{m-1}\Vert \omega \Vert _{m+1}, \end{aligned}$$
(7.8)
$$\begin{aligned} \left( \sum _{T\in \mathcal {T}_h} \Vert \nabla (\Delta \omega )-Q_b(\nabla (\Delta \omega ))\Vert ^2_{\partial T}\right) ^{\frac{1}{2}}&\le Ch^{m-\frac{3}{2}}\Vert \omega \Vert _{m+2}. \end{aligned}$$
(7.9)

Here \(\delta _{i,j}\) is the usual Kronecker’s delta with value \(1\) when \(i=j\) and value 0 otherwise.

Proof

To derive (7.5), we use the trace inequality (7.1) and the estimate (7.4) to obtain

$$\begin{aligned}&\sum _{T\in \mathcal {T}_h} h_T\Vert \Delta \omega -\mathbb {Q}_h\Delta \omega \Vert ^2_{\partial T}\nonumber \\&\quad \le C\sum _{T\in \mathcal {T}_h}\Big (\Vert \Delta \omega -\mathbb {Q}_h\Delta \omega \Vert ^2_T+h^2_T\Vert \nabla \left( \Delta \omega -\mathbb {Q}_h\Delta \omega \right) \Vert ^2_T\Big )\\&\quad \le Ch^{2m-2}\Vert \omega \Vert ^2_{m+1}. \end{aligned}$$

As to (7.6), we use the trace inequality (7.1) and the estimate (7.4) to obtain

$$\begin{aligned}&\sum _{T\in \mathcal {T}_h} h^3_T\Vert \nabla \left( \Delta \omega -\mathbb {Q}_h\Delta \omega \right) \Vert ^2_{\partial T}\\&\quad \le C\sum _{T\in \mathcal {T}_h}\left( h^2_T\Vert \nabla (\Delta \omega -\mathbb {Q}_h\Delta \omega )\Vert ^2_T+h^4_T\Vert \nabla ^2(\Delta \omega -\mathbb {Q}_h\Delta \omega )\Vert ^2_T\right) \\&\quad \le Ch^{2m-2}\Big (\Vert \omega \Vert ^2_{m+1}+h^2\delta _{m,2}\Vert \omega \Vert ^2_4\Big ). \end{aligned}$$

As to (7.7), we have from the definition of \(Q_b \), the trace inequality (7.1), and the estimate (7.3) that

$$\begin{aligned}&\sum _{T\in \mathcal {T}_h} h^{-1}_T\Vert \nabla (Q_0\omega )\cdot \mathbf n _e-Q_b(\nabla \omega \cdot \mathbf n _e)\Vert ^2_{\partial T}\\&\quad \le \sum _{T\in \mathcal {T}_h}h^{-1}_T\Vert (\nabla Q_0\omega -\nabla \omega )\cdot \mathbf n _e\Vert ^2_{\partial T}\\&\quad \le C\sum _{T\in \mathcal {T}_h}\left( h^{-2}_T\Vert \nabla Q_0\omega -\nabla \omega \Vert ^2_T+\Vert \nabla Q_0\omega -\nabla \omega \Vert ^2_{1,T}\right) \\&\quad \le Ch^{2m-2}\Vert \omega \Vert ^2_{m+1}. \end{aligned}$$

Notice that \(Q_b\) is a linear bounded operator, we use the definition of \(Q_b\) and the trace inequality (7.1) to obtain

$$\begin{aligned}&\sum _{T\in T_h}h_T^{-3}\Vert Q_b Q_0\omega -Q_b \omega \Vert _{\partial T}^2 \\&\quad \le \sum _{T\in T_h}\left( h_T^{-4}\Vert Q_0\omega -\omega \Vert _{T}^2+h_T^{-2}\Vert \nabla (Q_0\omega -\omega )\Vert _T^2\right) \\&\quad \le Ch^{2m-2}\Vert \omega \Vert _{m+1}^2. \end{aligned}$$

To derive (7.9), we use the trace inequality (7.1) and the estimate (7.4) to obtain

$$\begin{aligned}&\sum _{T\in \mathcal {T}_h} \Vert \nabla (\Delta \omega )-Q_b(\nabla (\Delta \omega ))\Vert ^2_{\partial T}\\&\quad \le C\sum _{T\in \mathcal {T}_h}\left( h^{-1}_T\Vert \nabla (\Delta \omega )-Q_b(\nabla (\Delta \omega ))\Vert ^2_T +h_T\Vert \nabla (\nabla (\Delta \omega )-Q_b(\nabla (\Delta \omega )))\Vert ^2_T\right) \\&\quad \le Ch^{2m-3}\Vert \omega \Vert ^2_{m+2}. \end{aligned}$$

This completes the proof of (7.9), and hence the lemma. \(\square \)

1.2 Technical Inequalities

The goal here is to present some technical estimates useful for deriving error estimates for the WG finite element scheme (3.5).

Lemma 7.5

There exists a constant \(C\) such that, for any \(v=\{v_0, v_b,v_n\mathbf n _e\}\in V_h\), the following holds true

$$\begin{aligned} \sum _{T\in \mathcal {T}_h}\Vert \Delta v_0\Vert ^2_T\le C|\!|\!| v |\!|\!|^2. \end{aligned}$$
(7.10)

Proof

From the identity (2.4) with \(\phi =\Delta v_0\) we have

$$\begin{aligned} \Vert \Delta v_0\Vert ^2_T&= (\Delta _w v, \Delta v_0)_T-\langle Q_b v_0-v_b, \nabla (\Delta v_0)\cdot \mathbf{n} \rangle _{\partial T} +\langle (\nabla v_0-v_n\mathbf{n}_e)\cdot \mathbf{n}, \Delta v_0 \rangle _{\partial T}. \end{aligned}$$

Thus, using the Cauchy–Schwarz inequality, trace inequality, and the inverse inequality we obtain

$$\begin{aligned} \Vert \Delta v_0\Vert ^2_T&\le \Vert \Delta _w v\Vert _T\Vert \Delta v_0\Vert _T+\Vert Q_bv_0-v_b\Vert _{\partial T}\Vert \nabla (\Delta v_0)\cdot \mathbf{n}\Vert _{\partial T}\\&+\,\Vert (\nabla v_0-v_n\mathbf{n}_e)\cdot \mathbf{n}\Vert _{\partial T}\Vert \Delta v_0\Vert _{\partial T}\\&\le C (\Vert \Delta _w v\Vert _T\Vert \Delta v_0\Vert _T+h_T^{-\frac{1}{2}}\Vert Q_bv_0-v_b\Vert _{\partial T}\Vert \nabla (\Delta v_0)\cdot \mathbf{n}\Vert _{T}\\&+\,h_T^{-\frac{1}{2}}\Vert (\nabla v_0-v_n\mathbf{n}_e)\cdot \mathbf{n}\Vert _{\partial T}\Vert \Delta v_0\Vert _{T}) \\&\le C(\Vert \Delta _w v\Vert _T\Vert \Delta v_0\Vert _T+h_T^{-\frac{3}{2}}\Vert Q_bv_0-v_b\Vert _{\partial T}\Vert \Delta v_0\Vert _{T}\\&+\,h_T^{-\frac{1}{2}}\Vert (\nabla v_0-v_n\mathbf{n}_e)\cdot \mathbf{n}\Vert _{\partial T}\Vert \Delta v_0\Vert _{T}).\\ \end{aligned}$$

Hence,

$$\begin{aligned} \Vert \Delta v_0\Vert ^2_T\le C(\Vert \Delta _w v\Vert _T^2+h_T^{-3}\Vert Q_bv_0-v_b\Vert _{\partial T}^2 +h_T^{-1}\Vert (\nabla v_0-v_n\mathbf{n}_e)\cdot \mathbf{n}\Vert _{\partial T}^2), \end{aligned}$$

which verifies the inequality (7.10). \(\square \)

Lemma 7.6

([37], Lemma 10.4) There exists a constant \(C\) such that, for any \(v\in V_h^0\), we have the following Poincaré inequality:

$$\begin{aligned} \Vert v_0\Vert ^2 \le C \left( \sum _{T\in {\mathcal {T}}_h}\Vert \nabla v_0\Vert _T^2 +h^{-1} \sum _{T\in \mathcal {T}_h}\Vert Q_bv_0-v_b\Vert ^2_{\partial T}\right) \!. \end{aligned}$$
(7.11)

The following lemma provides an estimate for the term \(\sum _{T\in {\mathcal {T}}_h}\Vert \nabla v_0\Vert _T^2\). Note that \(v_0\) is a piecewise polynomial of degree \(k\ge 2\). Thus, Lemma 7.7 is concerned only with piecewise polynomials; no boundary condition is necessary.

Lemma 7.7

Let \(\varphi \) be any piecewise polynomial of degree \(k\ge 2\) on each element \(T\). Denote by \(\nabla _h\varphi \) and \(\Delta _h \varphi \) the gradient and Laplacian of \(\varphi \) taken on each element. Then, for any \(\varepsilon >0\), there exists a constant \(C\) such that

$$\begin{aligned} \nonumber \Vert \nabla _h \varphi \Vert ^2&\le \varepsilon \Vert \varphi \Vert ^2 + C \varepsilon ^{-1} \Vert \Delta _h \varphi \Vert ^2\\&+\, C \varepsilon ^{-1}h^{-1} \left( \sum _{e\in \mathcal {E}_h}\int _{e}\left( \frac{\partial \varphi _L}{\partial \mathbf n _L} + \frac{\partial \varphi _R}{\partial \mathbf n _R}\right) ^2 ds\right) \\&\nonumber + \,Ch^{-1}\left( \sum _{e\in \mathcal {E}_h}\int _{e} (Q_b \varphi _R-Q_b \varphi _L)^2 ds\right) . \end{aligned}$$
(7.12)

Here \(\varphi _L\) is the trace of \(\varphi \) on \(e\) as seen from the “left” or the opposite direction of \({\mathbf {n}}_e\). If \(e\) is a boundary edge, then the trace from the outside of \(\Omega \) is defined as zero.

Proof

On each element \(T\), we have

$$\begin{aligned} \int _T |\nabla \varphi |^2 dT&= - \int _T \varphi \Delta \varphi \ dT +\int _{\partial T}\frac{\partial \varphi }{\partial \mathbf n }\, \varphi \, ds \\&= - \int _T \varphi \Delta \varphi dT +\int _{\partial T}\frac{\partial \varphi }{\partial \mathbf n }\, Q_b \varphi \, ds. \end{aligned}$$

Summing over all \(T\in \mathcal {T}_h\), we have

$$\begin{aligned} \Vert \nabla _h \varphi \Vert ^2 = - \int _\Omega \varphi \Delta _h \varphi dT +\sum _{T\in \mathcal {T}_h} \int _{\partial T}\frac{\partial \varphi }{\partial \mathbf n } \, Q_b \varphi \, ds. \end{aligned}$$
(7.13)

Using the identity \(a_L b_L+a_R b_R=(a_L+a_R)b_{L}+a_R(b_R-b_L)\) we obtain

$$\begin{aligned} \sum _{T\in \mathcal {T}_h} \int _{\partial T}\frac{\partial \varphi }{\partial \mathbf n } \, Q_b \varphi \, ds&= \sum _{e\in \mathcal {E}_h}\int _{e}\left( \frac{\partial \varphi _L}{\partial \mathbf n _L} \, Q_b \varphi _L+ \frac{\partial \varphi _R}{\partial \mathbf n _R} \, Q_b \varphi _R\, \right) ds \\&= \sum _{e\in \mathcal {E}_h}\int _{e}\left( \frac{\partial \varphi _L}{\partial \mathbf n _L}+ \frac{\partial \varphi _R}{\partial \mathbf n _R}\right) \, Q_b \varphi _L ds \\&+ \sum _{e\in \mathcal {E}_h}\int _{e} \frac{\partial \varphi _R}{\partial \mathbf n _R}\, (Q_b \varphi _R-Q_b \varphi _L) ds. \end{aligned}$$

Thus, from the Cauchy–Schwarz inequality we have

$$\begin{aligned} \left| \sum _{T\in \mathcal {T}_h} \int _{\partial T}\frac{\partial \varphi }{\partial \mathbf n } \, Q_b \varphi \, ds\right|&\le \left( \sum _{e\in \mathcal {E}_h}\int _{e}\left( \frac{\partial \varphi _L}{\partial \mathbf n _L} + \frac{\partial \varphi _R}{\partial \mathbf n _R}\right) ^2 ds\right) ^{\!\!\frac{1}{2}} \left( \sum _{e\in \mathcal {E}_h}\int _{e}\left| Q_b \varphi _L \right| ^2 ds\right) ^{\!\!\frac{1}{2}} \nonumber \\&+ \left( \sum _{e\in \mathcal {E}_h}\int _{e}\left| \frac{\partial \varphi _R}{\partial \mathbf n _R}\right| ^2 ds\right) ^{\!\!\frac{1}{2}} \left( \sum _{e\in \mathcal {E}_h}\int _{e} (Q_b \varphi _R-Q_b \varphi _L)^2 ds\right) ^{\!\!\frac{1}{2}}.\nonumber \\ \end{aligned}$$
(7.14)

Next, we use the trace inequality (7.1) and the inverse inequality (7.2) to obtain

$$\begin{aligned} \int _{e}\left| Q_b \varphi _L \right| ^2 ds&\le \int _{e}\left| \varphi _L \right| ^2 ds\nonumber \\ \nonumber&\le C \left[ h^{-1} \int _{T} \varphi ^2 dT + h \int _{T} |\nabla \varphi |^2 dT\right] \\&\le Ch^{-1} \int _{T} \varphi ^2 dT, \end{aligned}$$
(7.15)

and

$$\begin{aligned} \int _{e}\left| \frac{\partial \varphi _R}{\partial \mathbf n _R}\right| ^2 ds&\le C \left[ h^{-1} \int _{T} |\nabla \varphi |^2 dT + h \int _{T} |\nabla ^2 \varphi |^2 dT\right] \nonumber \\&\le C h^{-1} \int _{T} |\nabla \varphi |^2 dT. \end{aligned}$$
(7.16)

Substituting (7.15) and (7.16) into (7.14) yields

$$\begin{aligned} \left| \sum _{T\in \mathcal {T}_h} \int _{\partial T}\frac{\partial \varphi }{\partial \mathbf n } \, Q_b \varphi \, ds\right|&\le C h^{-\frac{1}{2}}\Vert \varphi \Vert \left( \sum _{e\in \mathcal {E}_h}\int _{e}\left( \frac{\partial \varphi _L}{\partial \mathbf n _L} + \frac{\partial \varphi _R}{\partial \mathbf n _R}\right) ^2 ds\right) ^{\frac{1}{2}} \nonumber \\&+ \,C h^{-\frac{1}{2}}\Vert \nabla _h \varphi \Vert \left( \sum _{e\in \mathcal {E}_h}\int _{e} (Q_b \varphi _R-Q_b \varphi _L)^2 ds\right) ^{\!\!\frac{1}{2}}\!. \end{aligned}$$
(7.17)

Substituting (7.17) into (7.13) gives

$$\begin{aligned} \Vert \nabla _h \varphi \Vert ^2&\le \Vert \Delta _h \varphi \Vert \ \Vert \varphi \Vert +Ch^{-\frac{1}{2}}\Vert \varphi \Vert \left( \sum _{e\in \mathcal {E}_h}\int _{e}\left( \frac{\partial \varphi _L}{\partial \mathbf n _L} + \frac{\partial \varphi _R}{\partial \mathbf n _R}\right) ^2 ds\right) ^{\frac{1}{2}} \\&+\, C h^{-\frac{1}{2}}\Vert \nabla _h \varphi \Vert \left( \sum _{e\in \mathcal {E}_h}\int _{e} (Q_b \varphi _R-Q_b \varphi _L)^2 ds\right) ^{\frac{1}{2}}, \end{aligned}$$

which, through an use of Young’s inequality, implies the desired estimate (7.12). This completes the proof. \(\square \)

Lemma 7.8

There exists a constant \(C\) such that for any \(v=\{v_0,v_b,v_n{\mathbf {n}}_e\}\in V_h^0\) the following Poincaré type inequality holds true

$$\begin{aligned} \Vert \nabla _h v_0\Vert \le C {|||} v {|||}. \end{aligned}$$
(7.18)

In addition, we have the following estimate

$$\begin{aligned} \Vert \nabla _h v_0\Vert \le \lambda h^{-1} \Vert v\Vert + C h {|||} v{|||}, \end{aligned}$$
(7.19)

where \(\lambda \) is a positive constant.

Proof

The first component \(v_0\) is a piecewise polynomial of degree \(k\ge 2\). Using the estimate (7.12) in Lemma 7.7 we have

$$\begin{aligned} \nonumber \Vert \nabla _h v_0\Vert ^2&\le \varepsilon \Vert v\Vert ^2 + C \varepsilon ^{-1} \Vert \Delta _h v_0\Vert ^2\\&+\, C \varepsilon ^{-1} h^{-1} \left( \sum _{e\in \mathcal {E}_h}\int _{e}\left( \frac{\partial {v_0}_L}{\partial \mathbf n _L} + \frac{\partial {v_0}_R}{\partial \mathbf n _R}\right) ^2 ds\right) \nonumber \\&+\, Ch^{-1}\left( \sum _{e\in \mathcal {E}_h}\int _{e} (Q_b {v_0}_R-Q_b {v_0}_L)^2 ds\right) \!. \end{aligned}$$
(7.20)

By inserting \(v_n{\mathbf {n}}_e\cdot {\mathbf {n}}\) in each integrand we obtain

$$\begin{aligned} \sum _{e\in \mathcal {E}_h}\int _{e}\left( \frac{\partial {v_0}_L}{\partial \mathbf n _L} + \frac{\partial {v_0}_R}{\partial \mathbf n _R}\right) ^2 ds \le C \sum _{T\in {\mathcal {T}}_h} \Vert \nabla v_0 \cdot {\mathbf {n}}_e - v_n\Vert _{\partial T}^2. \end{aligned}$$

Similarly, by inserting \(v_b\)

$$\begin{aligned} \sum _{e\in \mathcal {E}_h}\int _{e} (Q_b {v_0}_R-Q_b {v_0}_L)^2 ds \le C \sum _{T\in {\mathcal {T}}_h} \Vert Q_b v_0 - v_b\Vert ^2_{\partial T}. \end{aligned}$$

Substituting the above two inequalities into (7.20) yields

$$\begin{aligned} \Vert \nabla _h v_0\Vert ^2&\le \varepsilon \Vert v\Vert ^2 + C \varepsilon ^{-1} \Vert \Delta _h v_0\Vert ^2+ Ch^{-1}\sum _{T\in {\mathcal {T}}_h} \Vert Q_b v_0 - v_b\Vert ^2_{\partial T}\nonumber \\&+\, C \varepsilon ^{-1} h^{-1}\sum _{T\in {\mathcal {T}}_h} \Vert \nabla v_0 \cdot {\mathbf {n}}_e - v_n\Vert _{\partial T}^2. \end{aligned}$$
(7.21)

Using the Poincaré inequality (7.11) and the estimate (7.10) we arrive at

$$\begin{aligned} \Vert \nabla _h v_0\Vert ^2\le \varepsilon C \Vert \nabla _h v\Vert ^2 + C \varepsilon ^{-1} {|||} v {|||}^2, \end{aligned}$$

which leads to the inequality (7.18) for sufficiently small \(\varepsilon \).

Finally, by setting \(\varepsilon = \lambda h^{-2}\) in (7.21) we arrive at

$$\begin{aligned} \Vert \nabla _h v_0\Vert ^2\le \lambda h^{-2} \Vert v\Vert ^2 + C h^2 {|||} v{|||}^2, \end{aligned}$$

where \(\lambda \) is a positive constant. This verifies the inequality (7.19), and hence completes the proof of the lemma. \(\square \)

Lemma 7.9

There exists a constant \(C\) such that for any \(v=\{v_0,v_b,v_n{\mathbf {n}}_e\}\in V_h^0\) one has

$$\begin{aligned} \sum _{T\in \mathcal {T}_h}\int _{\partial T}(v_0-Q_b v_0)^2 ds \le C h {|||} v {|||}^2 \end{aligned}$$
(7.22)

and

$$\begin{aligned} \sum _{T\in \mathcal {T}_h}\int _{\partial T}(v_0-Q_b v_0)^2 ds \le C \lambda h^{-1}\Vert v\Vert ^2 + C h^3 {|||} v {|||}^2. \end{aligned}$$
(7.23)

Proof

From the trace inequality (7.1) and the inverse inequality (7.2), we have

$$\begin{aligned} \int _{\partial T}(v_0-Q_b v_0)^2 ds \le C h \int _T |\nabla v_0|^2 dT. \end{aligned}$$

Summing over all \(T\in \mathcal {T}_h\) yields

$$\begin{aligned} \sum _{T\in \mathcal {T}_h}\int _{\partial T}(v_0-Q_b v_0)^2 ds \le C h\sum _{T\in \mathcal {T}_h} \int _T |\nabla v_0|^2 dT, \end{aligned}$$
(7.24)

which, combined with (7.18) and (7.19), completes the proof of the lemma. \(\square \)

Remark 7.1

The estimate (7.22) in Lemma 7.9 is sufficient for us to derive an optimal order error estimate for the WG finite element solution arising from (3.5). But the estimate (7.22) is sub-optimal in terms of the mesh parameter \(h\). We conjecture that the following inequality holds true

$$\begin{aligned} \sum _{T\in \mathcal {T}_h}\int _{\partial T}(v_0-Q_b v_0)^2 ds \le C h^3 \ {|||} v {|||}^2. \end{aligned}$$
(7.25)

However, with the current mathematical approach, we are unable to verify the validity of (7.25). This estimate is then left to interested readers or researchers as an open problem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Zhai, Q. A Weak Galerkin Finite Element Scheme for the Biharmonic Equations by Using Polynomials of Reduced Order. J Sci Comput 64, 559–585 (2015). https://doi.org/10.1007/s10915-014-9945-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9945-7

Keywords

Mathematics Subject Classification

Navigation